Prioris.ai Inc., 459-207 Bank Street, Ottawa, K2P 2N2, Canada.
Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
Sci Rep. 2020 Feb 11;10(1):2366. doi: 10.1038/s41598-020-59384-7.
Pseudoreplication occurs when the number of measured values or data points exceeds the number of genuine replicates, and when the statistical analysis treats all data points as independent and thus fully contributing to the result. By artificially inflating the sample size, pseudoreplication contributes to irreproducibility, and it is a pervasive problem in biological research. In some fields, more than half of published experiments have pseudoreplication - making it one of the biggest threats to inferential validity. Researchers may be reluctant to use appropriate statistical methods if their hypothesis is about the pseudoreplicates and not the genuine replicates; for example, when an intervention is applied to pregnant female rodents (genuine replicates) but the hypothesis is about the effect on the multiple offspring (pseudoreplicates). We propose using a Bayesian predictive approach, which enables researchers to make valid inferences about biological entities of interest, even if they are pseudoreplicates, and show the benefits of this approach using two in vivo data sets.
当测量值或数据点的数量超过真实重复次数,并且统计分析将所有数据点视为独立且对结果有充分贡献时,就会出现伪复制。通过人为地增加样本量,伪复制会导致不可重复性,这是生物研究中普遍存在的问题。在某些领域,超过一半的已发表实验存在伪复制——这使其成为推理有效性的最大威胁之一。如果研究人员的假设是关于伪重复而不是真实重复,他们可能不愿意使用适当的统计方法;例如,当一种干预措施应用于怀孕的雌性啮齿动物(真实重复)时,但假设是关于对多个后代的影响(伪重复)。我们建议使用贝叶斯预测方法,即使它们是伪重复,该方法也可以使研究人员能够对感兴趣的生物实体进行有效推断,并使用两个体内数据集展示该方法的好处。