Suppr超能文献

在形式概念分析中使用基于ID3的概念约简技术理解温度-降雨数据。

Understanding temperature-rain data using ID3 based concept reduction technique in FCA.

作者信息

Usharani S, Kaspar S

机构信息

Department of Mathematics, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

出版信息

Sci Rep. 2025 May 25;15(1):18207. doi: 10.1038/s41598-025-02652-1.

Abstract

Proper understanding of rain yield along with the relevance factors and their extent of relation in the yield of rain is very important to maintain a smooth life style in every one's life. The definitive classification of mean temperature and heaviest rainy days depends on the weather changes that occur seasonwise during any year. In reality, visualizing the effects of climatic changes such as temperature in the rain-yield during over a period of years is very difficult and there is no method or tool to help us in this aspect. Formal concept analysis (FCA) which is a mathematical model that expresses the relationship between various features and entities in terms of pairs called concepts. These concepts are hierarchically related to form a unique concept lattice which is a diagrammatical view of the information available. In this paper, an approach to facilitate the understanding of temperature-rain data of Vellore district with the use of data collected for the recent 15 years period is presented. For the analysis, the mean temperature data is preprocessed seasonwise over the years. In a similar manner the rainy days also preprocessed seasonwise over the years. We illustrate the process of extracting meaningful information from the data with the use of FCA. In this process an ID3 algorithm based method is employed to identify more important features from the context. These important features are used to compress the concepts obtained from FCA and thereby reduce meaningful information. The efficiency of the proposed method is validated using few efficient metrics available in literature.

摘要

正确理解降雨量以及与降雨产量相关的因素及其关联程度,对于每个人维持平稳的生活方式非常重要。平均温度和最大降雨日的明确分类取决于每年季节性发生的天气变化。实际上,多年来可视化诸如温度等气候变化对降雨产量的影响非常困难,并且在这方面没有方法或工具可以帮助我们。形式概念分析(FCA)是一种数学模型,它以称为概念的对来表达各种特征和实体之间的关系。这些概念按层次关系形成一个独特的概念格,这是可用信息的图形化视图。本文提出了一种利用最近15年收集的数据来促进对韦洛尔地区温度 - 降雨数据理解的方法。为了进行分析,多年来按季节对平均温度数据进行预处理。以类似的方式,多年来也按季节对降雨日进行预处理。我们说明了使用FCA从数据中提取有意义信息的过程。在此过程中,采用基于ID3算法的方法从上下文中识别更重要的特征。这些重要特征用于压缩从FCA获得的概念,从而减少有意义的信息。使用文献中可用的一些有效指标对所提出方法的效率进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4849/12104398/7782b4d9a86c/41598_2025_2652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验