Department of Biology, Indiana University, Bloomington, IN, USA.
Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA.
Crit Rev Biochem Mol Biol. 2021 Feb;56(1):54-87. doi: 10.1080/10409238.2020.1856768. Epub 2020 Dec 27.
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
作用于 RNA 的腺苷脱氨酶(ADARs)存在于所有动物中,其功能是结合双链 RNA(dsRNA)并催化腺苷(A)脱氨为肌苷(I)。由于肌苷是鸟苷的生物类似物,ADAR 的脱氨作用会改变 RNA 序列中的遗传信息,通常称为 RNA 编辑。后生动物转录组中已报道了数百万个 A 到 I 的编辑事件,表明 RNA 编辑是一种广泛用于产生分子和表型多样性的机制。ADAR 的缺失会导致小鼠死亡,以及线虫和果蝇模型系统中的行为表型。此外,超过 35 种人类疾病中存在 RNA 编辑的改变,包括几种神经退行性疾病、代谢疾病和癌症。在这篇综述中,将先提供 ADAR 结构和靶标识别的基本介绍,然后总结 ADARs 如何影响细胞 RNA 的命运,以及研究人员如何利用这些知识来设计用于个性化医学的 ADARs。此外,我们将重点介绍 ADARs 和 RNA 编辑在先天免疫和癌症生物学中的重要作用。