Wang Dongyang, Xue Hailing, Xia Long, Li Zongqi, Zhao Yubo, Fan Xinan, Sun Kai, Wang Huanan, Hamalainen Timo, Zhang Chi, Cong Fengyu, Li Yanhua, Song Fei, Lin Jiaqi
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
Faculty of Information Technology, University of Jyvaskyla, 40014, Jyvaskyla, Finland.
Microsyst Nanoeng. 2025 May 26;11(1):105. doi: 10.1038/s41378-025-00908-4.
Non-invasive brain-computer interfaces (NI-BCIs) have garnered significant attention due to their safety and wide range of applications. However, developing non-invasive electroencephalogram (EEG) electrodes that are highly sensitive, comfortable to wear, and reusable has been challenging due to the limitations of conventional electrodes. Here, we introduce a simple method for fabricating semi-dry hydrogel EEG electrodes with antibacterial properties, enabling long-term, repeatable acquisition of EEG. By utilizing N-acryloyl glycinamide and hydroxypropyltrimethyl ammonium chloride chitosan, we have prepared electrodes that not only possess good mechanical properties (compression modulus 65 kPa) and anti-fatigue properties but also exhibit superior antibacterial properties. These electrodes effectively inhibit the growth of both Gram-negative (E. coli) and Gram-positive (S. epidermidis) bacteria. Furthermore, the hydrogel maintains stable water retention properties, resulting in an average contact impedance of <400 Ω measured over 12 h, and an ionic conductivity of 0.39 mS cm. Cytotoxicity and skin irritation tests have confirmed the high biocompatibility of the hydrogel electrodes. In an N170 event-related potential (ERP) test on human volunteers, we successfully captured the expected ERP signal waveform and a high signal-to-noise ratio (20.02 dB), comparable to that of conventional wet electrodes. Moreover, contact impedance on the scalps remained below 100 kΩ for 12 h, while wet electrodes became unable to detect signals after 7-8 h due to dehydration. In summary, our hydrogel electrodes are capable of detecting ERPs over extended periods in an easy-to-use manner with antibacterial properties. This reduces the risk of bacterial infection associated with prolonged reuse and expands the potential of NI-BCIs in daily life.
非侵入式脑机接口(NI-BCIs)因其安全性和广泛的应用范围而备受关注。然而,由于传统电极的局限性,开发高灵敏度、佩戴舒适且可重复使用的非侵入式脑电图(EEG)电极一直具有挑战性。在此,我们介绍一种制备具有抗菌性能的半干水凝胶EEG电极的简单方法,能够长期、可重复地采集EEG信号。通过使用N-丙烯酰甘氨酰胺和羟丙基三甲基氯化铵壳聚糖,我们制备的电极不仅具有良好的机械性能(压缩模量65 kPa)和抗疲劳性能,还表现出优异的抗菌性能。这些电极能有效抑制革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(表皮葡萄球菌)的生长。此外,水凝胶保持稳定的保水性能,在12小时内测得的平均接触阻抗<400Ω,离子电导率为0.39 mS cm。细胞毒性和皮肤刺激性测试证实了水凝胶电极具有高生物相容性。在对人类志愿者进行的N170事件相关电位(ERP)测试中,我们成功捕获了预期的ERP信号波形,且信噪比高(20.02 dB),与传统湿电极相当。此外,头皮上的接触阻抗在12小时内保持在100 kΩ以下,而湿电极在7 - 8小时后因脱水无法检测到信号。总之,我们的水凝胶电极能够以易于使用的方式长时间检测ERP信号,并具有抗菌性能。这降低了因长期重复使用而导致细菌感染的风险,并扩大了NI-BCIs在日常生活中的应用潜力。