Suppr超能文献

用于脑机接口的无创电极材料的技术现状

State of the Art of Non-Invasive Electrode Materials for Brain-Computer Interface.

作者信息

Yuan Haowen, Li Yao, Yang Junjun, Li Hongjie, Yang Qinya, Guo Cuiping, Zhu Shenmin, Shu Xiaokang

机构信息

State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Micromachines (Basel). 2021 Dec 8;12(12):1521. doi: 10.3390/mi12121521.

Abstract

The brain-computer interface (BCI) has emerged in recent years and has attracted great attention. As an indispensable part of the BCI signal acquisition system, brain electrodes have a great influence on the quality of the signal, which determines the final effect. Due to the special usage scenario of brain electrodes, some specific properties are required for them. In this study, we review the development of three major types of EEG electrodes from the perspective of material selection and structural design, including dry electrodes, wet electrodes, and semi-dry electrodes. Additionally, we provide a reference for the current chaotic performance evaluation of EEG electrodes in some aspects such as electrochemical performance, stability, and so on. Moreover, the challenges and future expectations for EEG electrodes are analyzed.

摘要

脑机接口(BCI)近年来应运而生,并引起了广泛关注。作为BCI信号采集系统不可或缺的一部分,脑电极对信号质量有很大影响,而信号质量决定了最终效果。由于脑电极的特殊使用场景,对其有一些特定的性能要求。在本研究中,我们从材料选择和结构设计的角度综述了三种主要类型的脑电图电极的发展,包括干电极、湿电极和半干电极。此外,我们在电化学性能、稳定性等一些方面为当前脑电图电极的混沌性能评估提供参考。此外,还分析了脑电图电极面临的挑战和未来期望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6444/8705666/ff84003d5dba/micromachines-12-01521-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验