Zhou Chenchen, Liang Shuaishuai, Qi Bin, Liu Chenxu, Cho Nam-Joon
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Centre for Cross Economy, Nanyang Technological University, Singapore, 637551, Singapore.
Nat Commun. 2024 Oct 15;15(1):8862. doi: 10.1038/s41467-024-53016-8.
In the quest for miniaturization across technical disciplines, microscale ceramic blocks emerge as pivotal components, with performance critically dependent on precise scales and intricate shapes. Sharp-edged ceramic microparticles, applied from micromachining to microelectronics, require innovative fabrication techniques for high-throughput production while maintaining structural complexity and mechanical integrity. This study introduces a "one-pot microfluidic fabrication" system incorporating two device fabrication strategies, "groove & tongue" and sliding assembling, achieving an unprecedented array of microparticles with diverse, complex shapes and refined precision, outperforming traditional methods in production rate and quality. Optimally designed sintering profiles based on derivative thermogravimetry enhance microparticles' shape retention and structural strength. Compression and scratch tests validate the superiority of microparticles, suggesting their practicability for diverse applications, such as precise micromachining, sophisticated microrobotics and delicate microsurgical tools. This advancement marks a shift in microscale manufacturing, offering a scalable solution to meet the demanding specifications of miniaturized technology components.
在各技术领域追求小型化的过程中,微型陶瓷块成为关键部件,其性能严重依赖于精确的尺寸和复杂的形状。从微机械加工到微电子领域应用的尖锐边缘陶瓷微粒,需要创新的制造技术来实现高通量生产,同时保持结构复杂性和机械完整性。本研究引入了一种“一锅微流体制备”系统,该系统结合了“凹槽与榫舌”和滑动组装这两种器件制造策略,实现了前所未有的一系列具有多样、复杂形状且精度极高的微粒,在生产率和质量方面优于传统方法。基于导数热重分析优化设计的烧结曲线可增强微粒的形状保持性和结构强度。压缩和划痕测试验证了微粒的优越性,表明它们在诸如精密微机械加工、精密微型机器人技术和精细显微手术工具等各种应用中具有实用性。这一进展标志着微尺度制造的转变,提供了一种可扩展的解决方案,以满足小型化技术部件的严格规格要求。