Jiang Mingfeng, Jia Peihang, Huang Xin, Yuan Zihan, Ruan Dongsheng, Liu Feng, Xia Ling
School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
School of Electrical Engineering and Computer Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
J Imaging. 2025 May 11;11(5):152. doi: 10.3390/jimaging11050152.
Magnetic Resonance Imaging (MRI) is a widely used, non-invasive imaging technology that plays a critical role in clinical diagnostics. Multi-modal MRI, which combines images from different modalities, enhances diagnostic accuracy by offering comprehensive tissue characterization. Meanwhile, multi-modal MRI enhances downstream tasks, like brain tumor segmentation and image reconstruction, by providing richer features. While recent advances in diffusion models (DMs) show potential for high-quality image translation, existing methods still struggle to preserve fine structural details and ensure accurate image synthesis in medical imaging. To address these challenges, we propose a Frequency-Aware Diffusion Model (FADM) for generating high-quality target modality MRI images from source modality images. The FADM incorporates a discrete wavelet transform within the diffusion model framework to extract both low- and high-frequency information from MRI images, enhancing the capture of tissue structural and textural features. Additionally, a wavelet downsampling layer and supervision module are incorporated to improve frequency awareness and optimize high-frequency detail extraction. Experimental results on the BraTS 2021 dataset and a 1.5T-3T MRI dataset demonstrate that the FADM outperforms existing generative models, particularly in preserving intricate brain structures and tumor regions while generating high-quality MRI images.
磁共振成像(MRI)是一种广泛应用的非侵入性成像技术,在临床诊断中起着关键作用。多模态MRI将来自不同模态的图像相结合,通过提供全面的组织特征描述来提高诊断准确性。同时,多模态MRI通过提供更丰富的特征来增强诸如脑肿瘤分割和图像重建等下游任务。虽然扩散模型(DMs)的最新进展显示出高质量图像翻译的潜力,但现有方法在医学成像中仍难以保留精细的结构细节并确保准确的图像合成。为应对这些挑战,我们提出了一种频率感知扩散模型(FADM),用于从源模态图像生成高质量的目标模态MRI图像。FADM在扩散模型框架内纳入离散小波变换,以从MRI图像中提取低频和高频信息,增强对组织结构和纹理特征的捕捉。此外,还纳入了小波下采样层和监督模块,以提高频率感知并优化高频细节提取。在BraTS 2021数据集和1.5T - 3T MRI数据集上的实验结果表明,FADM优于现有的生成模型,特别是在生成高质量MRI图像时,能够保留复杂的脑结构和肿瘤区域。