Suppr超能文献

基于变压器神经网络的量子图像传感器噪声抑制图像重建

Noise Suppressed Image Reconstruction for Quanta Image Sensors Based on Transformer Neural Networks.

作者信息

Wang Guanjie, Gao Zhiyuan

机构信息

School of Microelectronics, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

出版信息

J Imaging. 2025 May 17;11(5):160. doi: 10.3390/jimaging11050160.

Abstract

The photon detection capability of quanta image sensors make them an optimal choice for low-light imaging. To address Possion noise in QIS reconstruction caused by spatio-temporal oversampling characteristic, a deep learning-based noise suppression reconstruction method is proposed in this paper. The proposed neural network integrates convolutional neural networks and Transformers. Its architecture combines the Anscombe transformation with serial and parallel modules to enhance denoising performance and adaptability across various scenarios. Experimental results demonstrate that the proposed method effectively suppresses noise in QIS image reconstruction. Compared with representative methods such as TD-BM3D, QIS-Net and DPIR, our approach achieves up to 1.2 dB improvement in PSNR, demonstrating superior reconstruction quality.

摘要

量子图像传感器的光子探测能力使其成为低光成像的理想选择。针对量子图像传感器(QIS)重建中由于时空过采样特性引起的泊松噪声,本文提出了一种基于深度学习的噪声抑制重建方法。所提出的神经网络集成了卷积神经网络和Transformer。其架构将安斯库姆变换与串行和并行模块相结合,以增强去噪性能和在各种场景下的适应性。实验结果表明,该方法有效地抑制了QIS图像重建中的噪声。与TD-BM3D、QIS-Net和DPIR等代表性方法相比,我们的方法在峰值信噪比(PSNR)上提高了1.2 dB,展示了卓越的重建质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2e2/12112219/026b1578cde7/jimaging-11-00160-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验