Butt Muhammad A, Imran Akca B, Mateos Xavier
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
LaserLab, Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Nanomaterials (Basel). 2025 May 13;15(10):731. doi: 10.3390/nano15100731.
Integrated photonic biosensors are revolutionizing lab-on-a-chip technologies by providing highly sensitive, miniaturized, and label-free detection solutions for a wide range of biological and chemical targets. This review explores the foundational principles behind their operation, including the use of resonant photonic structures such as microring and whispering gallery mode resonators, as well as interferometric and photonic crystal-based designs. Special focus is given to the design strategies that optimize light-matter interaction, enhance sensitivity, and enable multiplexed detection. We detail state-of-the-art fabrication approaches compatible with complementary metal-oxide-semiconductor processes, including the use of silicon, silicon nitride, and hybrid material platforms, which facilitate scalable production and seamless integration with microfluidic systems. Recent advancements are highlighted, including the implementation of optofluidic photonic crystal cavities, cascaded microring arrays with subwavelength gratings, and on-chip detector arrays capable of parallel biosensing. These innovations have achieved exceptional performance, with detection limits reaching the parts-per-billion level and real-time operation across various applications such as clinical diagnostics, environmental surveillance, and food quality assessment. Although challenges persist in handling complex biological samples and achieving consistent large-scale fabrication, the emergence of novel materials, advanced nanofabrication methods, and artificial intelligence-driven data analysis is accelerating the development of next-generation photonic biosensing platforms. These technologies are poised to deliver powerful, accessible, and cost-effective diagnostic tools for practical deployment across diverse settings.
集成光子生物传感器正在彻底改变芯片实验室技术,为广泛的生物和化学目标提供高灵敏度、小型化和无标记的检测解决方案。本综述探讨了其工作背后的基本原理,包括使用微环和回音壁模式谐振器等谐振光子结构,以及基于干涉测量和光子晶体的设计。特别关注优化光与物质相互作用、提高灵敏度和实现多重检测的设计策略。我们详细介绍了与互补金属氧化物半导体工艺兼容的先进制造方法,包括使用硅、氮化硅和混合材料平台,这些方法有助于可扩展生产以及与微流体系统的无缝集成。重点介绍了近期的进展,包括光流体光子晶体腔的实现、带有亚波长光栅的级联微环阵列以及能够进行并行生物传感的片上探测器阵列。这些创新取得了卓越的性能,检测限达到十亿分之一水平,并能在临床诊断、环境监测和食品质量评估等各种应用中实时运行。尽管在处理复杂生物样品和实现一致的大规模制造方面仍然存在挑战,但新型材料、先进的纳米制造方法以及人工智能驱动的数据分析的出现正在加速下一代光子生物传感平台的发展。这些技术有望提供强大、易用且经济高效的诊断工具,以便在各种不同场景中实际应用。