文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications-A Comprehensive Review.

作者信息

Butt Muhammad A

机构信息

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

出版信息

Biosensors (Basel). 2025 Jan 9;15(1):35. doi: 10.3390/bios15010035.


DOI:10.3390/bios15010035
PMID:39852086
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11763797/
Abstract

Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/6a1ee3aa84a3/biosensors-15-00035-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/e0309ae04324/biosensors-15-00035-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/96f4a6a1fdc9/biosensors-15-00035-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/334b2b8cb9ed/biosensors-15-00035-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/88bdf8d28054/biosensors-15-00035-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/3bdb1903c9e2/biosensors-15-00035-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/42def5782805/biosensors-15-00035-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/b3c94d6e926c/biosensors-15-00035-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/0b18588deb48/biosensors-15-00035-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/44f04d2807c3/biosensors-15-00035-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/66ebcde90eb6/biosensors-15-00035-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/deebbae7a995/biosensors-15-00035-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/47c77c189adf/biosensors-15-00035-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/4d8218e9e26c/biosensors-15-00035-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/6a1ee3aa84a3/biosensors-15-00035-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/e0309ae04324/biosensors-15-00035-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/96f4a6a1fdc9/biosensors-15-00035-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/334b2b8cb9ed/biosensors-15-00035-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/88bdf8d28054/biosensors-15-00035-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/3bdb1903c9e2/biosensors-15-00035-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/42def5782805/biosensors-15-00035-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/b3c94d6e926c/biosensors-15-00035-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/0b18588deb48/biosensors-15-00035-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/44f04d2807c3/biosensors-15-00035-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/66ebcde90eb6/biosensors-15-00035-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/deebbae7a995/biosensors-15-00035-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/47c77c189adf/biosensors-15-00035-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/4d8218e9e26c/biosensors-15-00035-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de2/11763797/6a1ee3aa84a3/biosensors-15-00035-g014.jpg

相似文献

[1]
Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications-A Comprehensive Review.

Biosensors (Basel). 2025-1-9

[2]
Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection.

Biosensors (Basel). 2024-10-6

[3]
Present and future of surface plasmon resonance biosensors.

Anal Bioanal Chem. 2003-10

[4]
Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing.

Anal Chim Acta. 2019-12-27

[5]
Surface plasmonic biosensors: principles, designs and applications.

Analyst. 2023-12-4

[6]
Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection.

ACS Sens. 2025-2-28

[7]
Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.

Sensors (Basel). 2016-7-27

[8]
SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events.

Sensors (Basel). 2016-6-14

[9]
Recent advances in surface plasmon resonance based techniques for bioanalysis.

Anal Bioanal Chem. 2007-3

[10]
2D material-based surface plasmon resonance biosensors for applications in different domains: an insight.

Mikrochim Acta. 2024-6-6

引用本文的文献

[1]
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications.

Micromachines (Basel). 2025-8-13

[2]
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics.

Nanomaterials (Basel). 2025-7-25

[3]
Surface Plasmon Resonance for the Interaction of Capsular Polysaccharide (CPS) With KpACE.

Bio Protoc. 2025-6-20

[4]
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors.

Nanomaterials (Basel). 2025-6-18

[5]
Surface Plasmon Resonance Aptasensors: Emerging Design and Deployment Landscape.

Biosensors (Basel). 2025-6-4

[6]
Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms.

Nanomaterials (Basel). 2025-5-13

[7]
Plasmonic Biosensors in Cancer-Associated miRNA Detection.

Biosensors (Basel). 2025-3-4

本文引用的文献

[1]
ZnO-Nafion assisted optical fiber dual-SPR biosensor for simultaneous detection of urea and uric acid concentrations.

Biosens Bioelectron. 2025-3-1

[2]
Near-infrared SPR biosensor based on photonic crystal fiber for DNA hybridization detection.

Anal Chim Acta. 2025-1-2

[3]
Plasmonic Sensors Based on a Metal-Insulator-Metal Waveguide-What Do We Know So Far?

Sensors (Basel). 2024-11-7

[4]
Optical fiber-coupled Kretschmann SPR sensor with re-attachable gold nano-thin film sensing chip.

Opt Express. 2024-10-21

[5]
Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO matrix, for detection of Ochratoxin-A (OTA) in wine.

Talanta. 2025-3-1

[6]
New Parameter for Benchmarking Plasmonic Gas Sensors Demonstrated with Densely Packed Au Nanoparticle Layers.

ACS Appl Mater Interfaces. 2024-10-23

[7]
Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide.

Sensors (Basel). 2024-8-27

[8]
Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection.

Sensors (Basel). 2024-7-4

[9]
Machine learning-enhanced surface plasmon resonance based photonic crystal fiber sensor.

Opt Express. 2024-4-8

[10]
Integrated LSPR Biosensing Signal Processing Strategy and Visualization Implementation.

Micromachines (Basel). 2024-5-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索