Suppr超能文献

利用多组学和机器学习破解抗微生物药物耐药性问题。

Unlocking antimicrobial resistance with multiomics and machine learning.

作者信息

Ghosh Abhirupa, Vang Charmie K, Brenner Evan P, Ravi Janani

机构信息

Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.

Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

Trends Microbiol. 2025 May 26. doi: 10.1016/j.tim.2025.04.017.

Abstract

The global antimicrobial resistance (AMR) emergency is driven by complex and evolving molecular mechanisms. Cutting-edge machine learning methods and multiomics technologies can help to combat this crisis by predicting novel AMR biomarkers and outcomes with unprecedented precision and speed, offering critical insights into the molecular underpinnings of AMR.

摘要

全球抗菌药物耐药性(AMR)危机是由复杂且不断演变的分子机制驱动的。前沿的机器学习方法和多组学技术能够以前所未有的精度和速度预测新的AMR生物标志物及结果,从而有助于应对这一危机,为AMR的分子基础提供关键见解。

相似文献

2
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

本文引用的文献

2
PanKA: Leveraging population pangenome to predict antibiotic resistance.PanKA:利用群体泛基因组预测抗生素耐药性。
iScience. 2024 Aug 2;27(9):110623. doi: 10.1016/j.isci.2024.110623. eCollection 2024 Sep 20.
5
Informing antimicrobial stewardship with explainable AI.利用可解释人工智能指导抗菌药物管理。
PLOS Digit Health. 2023 Jan 5;2(1):e0000162. doi: 10.1371/journal.pdig.0000162. eCollection 2023 Jan.
7
Application of Machine Learning Classifier to Drug Resistance Analysis.机器学习分类器在耐药性分析中的应用。
Front Cell Infect Microbiol. 2021 Oct 15;11:742062. doi: 10.3389/fcimb.2021.742062. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验