Suppr超能文献

基于多维数据空间化的外来入侵物种经济损失模型研究——以江苏省 造成的经济损失为例 。 你提供的原文中“in Jiangsu Province”前似乎少了具体物种名称。

Research on the Economic Loss Model of Invasive Alien Species Based on Multidimensional Data Spatialization-A Case Study of Economic Losses Caused by in Jiangsu Province.

作者信息

Li Cheng, Zhou Yongbin, Wang Cong, Pan Xubin, Wang Ying, Qi Xiaofeng, Wan Fanghao

机构信息

Shenzhen Institute of Information Technology, Shenzhen 518172, China.

Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.

出版信息

Biology (Basel). 2025 May 15;14(5):552. doi: 10.3390/biology14050552.

Abstract

IAS imposes significant impacts on native ecosystems and economies. Current assessment methods for economic losses predominantly rely on habitat suitability estimation and database extrapolation, often lacking integration of causal inference and dynamic spatial drivers. , a pervasive invasive pest in Jiangsu Province, China, exemplifies this challenge through its rapid spread and multi-sector economic impacts. To address these limitations, we innovatively integrated three models: (1) Difference-in-Differences (DID) quantified causal economic impacts through spatiotemporal comparison of infested/non-infested areas; (2) GeoDetector identified key spatial drivers via stratified heterogeneity analysis; (3) MaxEnt projected ecological suitability under climate scenarios. The synergy enabled dynamic loss attribution: GeoDetector optimized DID's variable selection, while MaxEnt constrained loss extrapolation to ecologically plausible zones, achieving multi-scale causal-spatial-climate integration absent in conventional approaches. In Jiangsu Province, caused CNY 89.2 million in primary sector losses in 2022, with forestry disproportionately impacted, accounting for 58.3% of the total losses. The DID model revealed nonlinear temporal impacts indicating a loss of 0.163 forestry per 30 m grid, while MaxEnt projected 22% habitat contraction under the SSP5-8.5 scenario by 2060, which corresponds to climate-adjusted losses of CNY 147 million. Spatial prioritization identified northern Jiangsu (e.g., Xuzhou, Lianyungang) as high-risk zones requiring immediate intervention. The framework enables spatially explicit prioritization of containment efforts-grids identified as high-risk necessitate a tripling of funding in comparison to low-risk areas. And SSP-specific loss projections support dynamic budget planning under climate uncertainty. By integrating causal attribution, ecological realism, and climate resilience, this model transforms IAS management from reactive firefighting to proactive, data-driven governance. It provides a replicable toolkit for balancing ecological preservation and economic stability in the Anthropocene.

摘要

外来入侵物种对当地生态系统和经济造成了重大影响。当前经济损失评估方法主要依赖于栖息地适宜性估计和数据库外推,往往缺乏因果推断和动态空间驱动因素的整合。在中国江苏省广泛存在的一种入侵害虫,通过其迅速扩散和多部门经济影响体现了这一挑战。为解决这些局限性,我们创新性地整合了三种模型:(1)双重差分法(DID)通过对受灾/未受灾地区的时空比较来量化因果经济影响;(2)地理探测器通过分层异质性分析确定关键空间驱动因素;(3)最大熵模型在气候情景下预测生态适宜性。这种协同作用实现了动态损失归因:地理探测器优化了DID的变量选择,而最大熵模型将损失外推限制在生态合理区域,实现了传统方法中缺乏的多尺度因果-空间-气候整合。在江苏省,[具体物种]在2022年给第一产业造成了8920万元的损失,其中林业受到的影响尤为严重,占总损失的58.3%。DID模型揭示了非线性的时间影响,表明每30米网格的林业损失为0.163,而最大熵模型预测到2060年在SSP5-8.5情景下栖息地将收缩22%,这相当于经气候调整后的损失为1.47亿元。空间优先级确定苏北地区(如徐州、连云港)为高风险区域,需要立即进行干预。该框架能够在空间上明确遏制措施的优先级——被确定为高风险的网格与低风险区域相比,所需资金要增加两倍。特定于SSP的损失预测支持在气候不确定性下进行动态预算规划。通过整合因果归因、生态现实性和气候复原力,该模型将外来入侵物种管理从被动灭火转变为主动的、数据驱动的治理。它为在人类世平衡生态保护和经济稳定提供了一个可复制的工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bc/12109252/4d639e3bd374/biology-14-00552-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验