Suppr超能文献

慢性肾脏病中的新兴生物标志物与先进诊断:通过多组学和人工智能实现早期检测

Emerging Biomarkers and Advanced Diagnostics in Chronic Kidney Disease: Early Detection Through Multi-Omics and AI.

作者信息

Alobaidi Sami

机构信息

Department of Internal Medicine, University of Jeddah, Jeddah 21493, Saudi Arabia.

出版信息

Diagnostics (Basel). 2025 May 13;15(10):1225. doi: 10.3390/diagnostics15101225.

Abstract

Chronic kidney disease (CKD) remains a significant global health burden, often diagnosed at advanced stages due to the limitations of traditional biomarkers such as serum creatinine and estimated glomerular filtration rate (eGFR). This review aims to critically evaluate recent advancements in novel biomarkers, multi-omics technologies, and artificial intelligence (AI)-driven diagnostic strategies, specifically addressing existing gaps in early CKD detection and personalized patient management. We specifically explore key advancements in CKD diagnostics, focusing on emerging biomarkers-including neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), soluble urokinase plasminogen activator receptor (suPAR), and cystatin C-and their clinical applications. Additionally, multi-omics approaches integrating genomics, proteomics, metabolomics, and transcriptomics are reshaping disease classification and prognosis. Artificial intelligence (AI)-driven predictive models further enhance diagnostic accuracy, enabling real-time risk assessment and treatment optimization. Despite these innovations, challenges remain in biomarker standardization, large-scale validation, and integration into clinical practice. Future research should focus on refining multi-biomarker panels, improving assay standardization, and facilitating the clinical adoption of precision-driven diagnostics. By leveraging these advancements, CKD diagnostics can transition toward earlier intervention, individualized therapy, and improved patient outcomes.

摘要

慢性肾脏病(CKD)仍然是一项重大的全球健康负担,由于血清肌酐和估算肾小球滤过率(eGFR)等传统生物标志物存在局限性,往往在疾病晚期才得以诊断。本综述旨在批判性地评估新型生物标志物、多组学技术和人工智能(AI)驱动的诊断策略方面的最新进展,特别关注早期CKD检测和个性化患者管理中存在的差距。我们具体探讨了CKD诊断领域的关键进展,重点关注新兴生物标志物,包括中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、肾损伤分子-1(KIM-1)、可溶性尿激酶型纤溶酶原激活物受体(suPAR)和胱抑素C,以及它们的临床应用。此外,整合基因组学、蛋白质组学、代谢组学和转录组学的多组学方法正在重塑疾病分类和预后评估。人工智能(AI)驱动的预测模型进一步提高了诊断准确性,能够进行实时风险评估和治疗优化。尽管有这些创新,但在生物标志物标准化、大规模验证以及整合到临床实践方面仍存在挑战。未来的研究应专注于完善多生物标志物组合、改进检测标准化,并推动精准驱动诊断在临床中的应用。通过利用这些进展,CKD诊断可以朝着早期干预、个体化治疗和改善患者预后的方向发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6919/12110191/f2cc1503588c/diagnostics-15-01225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验