Suppr超能文献

氧化锌-碳纳米管纳米复合光电突触器件中的突触可塑性与记忆保持

Synaptic Plasticity and Memory Retention in ZnO-CNT Nanocomposite Optoelectronic Synaptic Devices.

作者信息

Lee Seung Hun, Jeon Dabin, Lee Sung-Nam

机构信息

Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea.

Department of Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea.

出版信息

Materials (Basel). 2025 May 15;18(10):2293. doi: 10.3390/ma18102293.

Abstract

This study presents the fabrication and characterization of ZnO-CNT composite-based optoelectronic synaptic devices via a sol-gel process. By incorporating various concentrations of CNTs (0-2.0 wt%) into ZnO thin films, we investigated their effects on synaptic behaviors under ultraviolet (UV) stimulation. The CNT addition enhanced the electrical and optical performance by forming a p-n heterojunction with ZnO, which promoted charge separation and suppressed recombination. As a result, the 1.5 wt% CNT device exhibited the highest excitatory postsynaptic current (EPSC), improved paired-pulse facilitation, and prolonged memory retention. Learning-forgetting cycles revealed that repeated stimulation reduced the number of pulses required for relearning while extending the forgetting time, mimicking biological memory reinforcement. Energy consumption per pulse was estimated at 16.34 nJ, suggesting potential for low-power neuromorphic applications. A 3 × 3 device array was also employed for visual memory simulation, showing spatially controllable and stable memory states depending on CNT content. To support these findings, structural and optical analyses were conducted using scanning electron microscopy (SEM), UV-visible absorption spectroscopy, photoluminescence (PL) spectroscopy, and Raman spectroscopy. These findings demonstrate that the synaptic characteristics of ZnO-based devices can be finely tuned through CNT incorporation, providing a promising pathway for the development of energy-efficient and adaptive optoelectronic neuromorphic systems.

摘要

本研究通过溶胶-凝胶工艺展示了基于ZnO-CNT复合材料的光电突触器件的制备与表征。通过将不同浓度(0-2.0 wt%)的碳纳米管(CNT)掺入ZnO薄膜中,我们研究了它们在紫外(UV)刺激下对突触行为的影响。碳纳米管的添加通过与ZnO形成p-n异质结增强了电学和光学性能,促进了电荷分离并抑制了复合。结果,1.5 wt%碳纳米管器件表现出最高的兴奋性突触后电流(EPSC)、改善的双脉冲易化以及延长的记忆保持时间。学习-遗忘循环表明,重复刺激减少了重新学习所需的脉冲数量,同时延长了遗忘时间,模拟了生物记忆强化。每个脉冲的能量消耗估计为16.34 nJ,表明其在低功耗神经形态应用方面具有潜力。还采用了一个3×3器件阵列进行视觉记忆模拟,结果显示根据碳纳米管含量,记忆状态在空间上可控且稳定。为支持这些发现,使用扫描电子显微镜(SEM)、紫外-可见吸收光谱、光致发光(PL)光谱和拉曼光谱进行了结构和光学分析。这些发现表明,通过掺入碳纳米管可以精细调节基于ZnO的器件的突触特性,为开发节能和自适应光电神经形态系统提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bff/12113453/e344f596a12b/materials-18-02293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验