Suppr超能文献

通过睡眠模式和基于心电图的生物年龄估计进行心血管风险评估。

Cardiovascular Risk Assessment via Sleep Patterns and ECG-Based Biological Age Estimation.

作者信息

Manimaran Gouthamaan, Puthusserypady Sadasivan, Dominguez Helena, Bardram Jakob E

机构信息

Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark.

Department of Cardiology, Bisperbjerg-Frederiksberg Hospital, 2400 Copenhagen, Denmark.

出版信息

J Clin Med. 2025 May 11;14(10):3339. doi: 10.3390/jcm14103339.

Abstract

Understanding the intricate relationship between sleep quality and cardiovascular outcomes opens new avenues for risk stratification in cardiovascular diseases (CVDs). This study aims to evaluate the prognostic potential of biological age estimates derived from sleep-stage analysis and nocturnal heart rhythm patterns. Using polysomnographic data from 1149 patients, we extract ECG signals and use an unsupervised clustering approach to generate time-series clusters that capture dynamic fluctuations in heart rhythms. A subsequent deep learning model then estimated individual biological ages from these clusters, revealing associations between the predicted age, sleep patterns, and cardiac function. In an independent test set of 736 patients, the predicted biological age was significantly associated with increased mortality (Hazard Ratio [HR] 2.27, < 0.05) and elevated CVD risk (HR 3.56, < 0.001), while models based solely on nocturnal heart rhythms yielded HRs of 2.29 ( < 0.05) for all-cause mortality and 3.13 ( < 0.01) for CVD risk. These findings demonstrate that integrating sleep stage and ECG offers a robust biomarker for cardiovascular risk stratification, paving the way for earlier interventions and more personalized healthcare strategies.

摘要

了解睡眠质量与心血管结局之间的复杂关系为心血管疾病(CVD)的风险分层开辟了新途径。本研究旨在评估从睡眠阶段分析和夜间心律模式得出的生物学年龄估计值的预后潜力。利用1149名患者的多导睡眠图数据,我们提取心电图信号,并使用无监督聚类方法生成捕捉心律动态波动的时间序列聚类。随后的深度学习模型然后从这些聚类中估计个体生物学年龄,揭示预测年龄、睡眠模式和心脏功能之间的关联。在736名患者的独立测试集中,预测的生物学年龄与死亡率增加(风险比[HR]2.27,<0.05)和CVD风险升高(HR 3.56,<0.001)显著相关,而仅基于夜间心律的模型全因死亡率的HR为2.29(<0.05),CVD风险的HR为3.13(<0.01)。这些发现表明,整合睡眠阶段和心电图可为心血管风险分层提供一个强大的生物标志物,为早期干预和更个性化的医疗保健策略铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d1/12112499/f6356af959ec/jcm-14-03339-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验