Manimaran Gouthamaan, Puthusserypady Sadasivan, Dominguez Helena, Bardram Jakob E
Department of Health Technology, Technical University of Denmark, 2800 Copenhagen, Denmark.
Department of Cardiology, Bisperbjerg-Frederiksberg Hospital, 2400 Copenhagen, Denmark.
J Clin Med. 2025 May 11;14(10):3339. doi: 10.3390/jcm14103339.
Understanding the intricate relationship between sleep quality and cardiovascular outcomes opens new avenues for risk stratification in cardiovascular diseases (CVDs). This study aims to evaluate the prognostic potential of biological age estimates derived from sleep-stage analysis and nocturnal heart rhythm patterns. Using polysomnographic data from 1149 patients, we extract ECG signals and use an unsupervised clustering approach to generate time-series clusters that capture dynamic fluctuations in heart rhythms. A subsequent deep learning model then estimated individual biological ages from these clusters, revealing associations between the predicted age, sleep patterns, and cardiac function. In an independent test set of 736 patients, the predicted biological age was significantly associated with increased mortality (Hazard Ratio [HR] 2.27, < 0.05) and elevated CVD risk (HR 3.56, < 0.001), while models based solely on nocturnal heart rhythms yielded HRs of 2.29 ( < 0.05) for all-cause mortality and 3.13 ( < 0.01) for CVD risk. These findings demonstrate that integrating sleep stage and ECG offers a robust biomarker for cardiovascular risk stratification, paving the way for earlier interventions and more personalized healthcare strategies.
了解睡眠质量与心血管结局之间的复杂关系为心血管疾病(CVD)的风险分层开辟了新途径。本研究旨在评估从睡眠阶段分析和夜间心律模式得出的生物学年龄估计值的预后潜力。利用1149名患者的多导睡眠图数据,我们提取心电图信号,并使用无监督聚类方法生成捕捉心律动态波动的时间序列聚类。随后的深度学习模型然后从这些聚类中估计个体生物学年龄,揭示预测年龄、睡眠模式和心脏功能之间的关联。在736名患者的独立测试集中,预测的生物学年龄与死亡率增加(风险比[HR]2.27,<0.05)和CVD风险升高(HR 3.56,<0.001)显著相关,而仅基于夜间心律的模型全因死亡率的HR为2.29(<0.05),CVD风险的HR为3.13(<0.01)。这些发现表明,整合睡眠阶段和心电图可为心血管风险分层提供一个强大的生物标志物,为早期干预和更个性化的医疗保健策略铺平道路。