Zareyan Mariam, Mockevičiūtė Rima, Jurkonienė Sigita, Gavelienė Virgilija, Paškevičius Algimantas, Šveikauskas Vaidevutis
Laboratory of Plant Physiology and Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania.
Microorganisms. 2025 Apr 30;13(5):1042. doi: 10.3390/microorganisms13051042.
Improving wheat drought stress tolerance is a critical and challenging task, and more research is necessary since many parts of the world depend on this crop for food and feed. Our current work is focused on the influence of probiotic microorganisms in combination with calcium salts on the physiological and biochemical metabolic pathways that wheat uses when exposed to drought stress and on the analysis of gene expression levels that contribute to wheat drought tolerance. The research was conducted in the laboratory under controlled conditions, simulating a prolonged drought. Seedlings were treated with different microorganisms (, , and some yeast) in 10 CFU/mL concentrations for seed priming and later in the same concentration for seedling spraying. A total of 70 g/m CaCO or 100 g/m CaCl was added to the soil before sowing the seeds. Almost all tested treatments improved plant growth and positively affected prolonged drought resistance in winter wheat. , in combination with calcium salts, had the greatest effect on maintaining the relative leaf water content (RWC). The proline, malondialdehyde (MDA), and HO tests proved the significant positive impact of the treatments on the plant's response at the biochemical level, with growth parameters close to those of irrigated plants, for example, the ones treated with alone or with Ca salts had the lowest HO content, 0.86-0.96 μmol g FW, compared to 3.85 μmol g FW for the Control, along with lower levels of drought-induced gene expression. All the presented results show statistically significant differences ( < 0.05). This study showed that tested microorganisms in combination with calcium salts can activate plants' defense reactions in response to drought. The practical significance of this study is that these ecological measures can be useful under field conditions.
提高小麦的干旱胁迫耐受性是一项关键且具有挑战性的任务,鉴于世界上许多地区的粮食和饲料都依赖这种作物,因此有必要开展更多研究。我们目前的工作重点是益生菌微生物与钙盐结合对小麦在干旱胁迫下所使用的生理和生化代谢途径的影响,以及对有助于小麦耐旱性的基因表达水平的分析。该研究在实验室的可控条件下进行,模拟长期干旱。用浓度为10 CFU/mL的不同微生物(、和一些酵母)对种子进行引发处理,之后以相同浓度对幼苗进行喷施。在播种前向土壤中添加70 g/m的CaCO或100 g/m的CaCl。几乎所有测试处理都改善了植株生长,并对冬小麦的长期抗旱性产生了积极影响。与钙盐结合,对维持叶片相对含水量(RWC)的效果最佳。脯氨酸、丙二醛(MDA)和HO测试证明了这些处理在生化水平上对植物反应有显著的积极影响,其生长参数接近灌溉植株,例如,单独用处理或与钙盐一起处理的植株HO含量最低,为0.86 - 0.96 μmol g FW,而对照为3.85 μmol g FW,同时干旱诱导的基因表达水平也较低。所有呈现的结果均显示出统计学上的显著差异(< 0.05)。本研究表明,测试的微生物与钙盐结合可以激活植物对干旱的防御反应。这项研究的实际意义在于,这些生态措施在田间条件下可能会有用。