Suppr超能文献

一种用于处理药代动力学建模中缺失协变量数据的多重填补工作流程。

A Multiple Imputation Workflow for Handling Missing Covariate Data in Pharmacometrics Modeling.

作者信息

Vuong My-Luong, Verbeke Geert, Dreesen Erwin

机构信息

Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.

Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Jun;14(6):991-1005. doi: 10.1002/psp4.70039. Epub 2025 May 29.

Abstract

Covariate missingness is a prevalent issue in pharmacometrics modeling. Incorrect handling of missing covariates can lead to biased parameter estimates, adversely affecting clinical practice and drug development dosing decisions. Single imputation is usually favored by pharmacometricians for its simplicity, but it ignores the uncertainty about imputed values, potentially leading to biased estimates and standard errors. Multiple imputation, in contrast, generates multiple plausible values from a predictive distribution, addressing this uncertainty and thus is a preferable approach over single imputation to handle covariate missingness. Yet, its application in pharmacometrics remains limited due to perceived complexity. To address this, we developed a multiple imputation workflow specifically tailored for pharmacometricians, encouraging wider adoption of this more reliable method in pharmacometrics modeling. We compared single imputation and multiple imputation in estimating covariate effects using a publicly available dataset on warfarin pharmacokinetics in healthy volunteers. A one-compartment population pharmacokinetic model with baseline body weight as the only covariate was used to describe the warfarin pharmacokinetics. We simulated five scenarios in which 6.25%, 12.5%, 25%, 50%, and 75% of the subjects had their body weight missing under a missing at random mechanism conditioned on age and sex. We confirm that multiple imputation better reflects uncertainty estimates than single imputation, regardless of the degree of missingness. This confirms multiple imputation as a superior alternative to single imputation for handling missing covariate data in pharmacometrics.

摘要

协变量缺失是药代动力学建模中普遍存在的问题。对缺失协变量处理不当会导致参数估计有偏差,对临床实践和药物研发剂量决策产生不利影响。单插补法因其简单性通常受到药代动力学家的青睐,但它忽略了插补值的不确定性,可能导致估计值和标准误差有偏差。相比之下,多重插补法从预测分布中生成多个合理值,解决了这种不确定性,因此在处理协变量缺失方面是比单插补法更可取的方法。然而,由于其复杂性,它在药代动力学中的应用仍然有限。为了解决这个问题,我们专门为药代动力学家开发了一种多重插补工作流程,鼓励在药代动力学建模中更广泛地采用这种更可靠的方法。我们使用健康志愿者华法林药代动力学的公开数据集,比较了单插补法和多重插补法在估计协变量效应方面的情况。采用以基线体重作为唯一协变量的一室群体药代动力学模型来描述华法林的药代动力学。我们模拟了五种情况,在基于年龄和性别的随机缺失机制下,分别有6.25%、12.5%、25%、50%和75%的受试者体重数据缺失。我们证实,无论缺失程度如何,多重插补法比单插补法能更好地反映不确定性估计。这证实了多重插补法是药代动力学中处理缺失协变量数据时比单插补法更优的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验