Suppr超能文献

用于推断流网络中节点质量的自洽引力模型。

Self-consistent gravity model for inferring node mass in flow networks.

作者信息

Lee Daekyung, Cho Wonguk, Kim Heetae, Kim Gunn, Jeong Hyeong-Chai, Kim Beom Jun

机构信息

Department of Energy Engineering, Korea Institute of Energy Technology, Naju, 58322, Republic of Korea.

Supply Chain Intelligence Institute Austria, Vienna, 1030, Austria.

出版信息

Sci Rep. 2025 May 29;15(1):18839. doi: 10.1038/s41598-025-03664-7.

Abstract

The gravity model, inspired by Newton's law of universal gravitation, has been a cornerstone in the analysis of trade flows between countries. In this model, each country is assigned an economic mass, where greater economic masses lead to stronger trade interactions. Traditionally, proxy variables like gross domestic product or other economic indicators have been used to approximate this economic mass. While these proxies offer convenient estimates of a country's economic size, they lack a direct theoretical connection to the actual drivers of trade flows, potentially leading to inconsistencies and misinterpretations. To address these limitations, we present a data-driven, self-consistent numerical approach that infers economic mass directly from trade flow data, eliminating the need for arbitrary proxies. Our approach, tested on synthetic data, accurately reconstructs predefined embeddings and system attributes, demonstrating robust predictive accuracy and flexibility. When applied to real-world trade networks, our method not only captures trade flows with precision but also distinguishes a country's intrinsic trade capacity from external factors, providing clearer insights into the key elements shaping the global trade landscape. This study marks a significant shift in the application of the gravity model, offering a more comprehensive tool for analyzing complex systems and revealing new insights across various fields, including global trade, traffic engineering, epidemic prevention, and infrastructure design.

摘要

引力模型受牛顿万有引力定律启发,一直是分析国家间贸易流动的基石。在该模型中,每个国家被赋予一个经济质量,经济质量越大,贸易互动越强。传统上,诸如国内生产总值或其他经济指标等代理变量被用来近似这种经济质量。虽然这些代理变量方便地估计了一个国家的经济规模,但它们与贸易流动的实际驱动因素缺乏直接的理论联系,可能导致不一致和误解。为了解决这些局限性,我们提出了一种数据驱动、自洽的数值方法,该方法直接从贸易流动数据中推断经济质量,无需任意代理变量。我们的方法在合成数据上进行了测试,准确地重建了预定义的嵌入和系统属性,展示了强大的预测准确性和灵活性。当应用于现实世界的贸易网络时,我们的方法不仅能精确捕捉贸易流动,还能将一个国家的内在贸易能力与外部因素区分开来,为塑造全球贸易格局的关键因素提供更清晰的见解。这项研究标志着引力模型应用的重大转变,为分析复杂系统提供了一个更全面的工具,并在包括全球贸易、交通工程、防疫和基础设施设计在内的各个领域揭示了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7903/12122783/5da812ba35cb/41598_2025_3664_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验