Suppr超能文献

一种用于记忆计数的神经理论。

A neural theory for counting memories.

机构信息

Computer Science and Engineering Department, University of California San Diego, La Jolla, CA, 92037, USA.

Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

Nat Commun. 2022 Oct 10;13(1):5961. doi: 10.1038/s41467-022-33577-2.

Abstract

Keeping track of the number of times different stimuli have been experienced is a critical computation for behavior. Here, we propose a theoretical two-layer neural circuit that stores counts of stimulus occurrence frequencies. This circuit implements a data structure, called a count sketch, that is commonly used in computer science to maintain item frequencies in streaming data. Our first model implements a count sketch using Hebbian synapses and outputs stimulus-specific frequencies. Our second model uses anti-Hebbian plasticity and only tracks frequencies within four count categories ("1-2-3-many"), which trades-off the number of categories that need to be distinguished with the potential ethological value of those categories. We show how both models can robustly track stimulus occurrence frequencies, thus expanding the traditional novelty-familiarity memory axis from binary to discrete with more than two possible values. Finally, we show that an implementation of the "1-2-3-many" count sketch exists in the insect mushroom body.

摘要

跟踪不同刺激出现的次数对于行为来说是一项关键的计算。在这里,我们提出了一个理论上的两层神经电路,用于存储刺激发生频率的计数。该电路实现了一种称为计数草图的数据结构,该结构在计算机科学中常用于在流数据中维护项目频率。我们的第一个模型使用赫布突触实现了计数草图,并输出刺激特异性频率。我们的第二个模型使用反赫布可塑性,只跟踪四个计数类别内的频率(“1-2-3-多”),这在需要区分的类别数量与这些类别的潜在生态价值之间进行了权衡。我们展示了这两个模型如何能够稳健地跟踪刺激出现的频率,从而将传统的新颖性-熟悉性记忆轴从二进制扩展到具有两个以上可能值的离散。最后,我们表明,昆虫蘑菇体中存在“1-2-3-多”计数草图的实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da9/9551066/3dabef8e5986/41467_2022_33577_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验