Jones Liam, Salta Maria, Skovhus Torben Lund, Thomas Kathryn, Illson Timothy, Wharton Julian, Webb Jeremy
School of Biological Sciences, University of Southampton, Southampton, UK.
Endures, MIC and Biofilm Department, Bevesierweg 1, DC002, 1781 AT Den Helder, The Netherlands.
Npj Mater Degrad. 2024;8(1):125. doi: 10.1038/s41529-024-00542-x. Epub 2024 Dec 6.
Continual challenges due to microbial corrosion are faced by the maritime, offshore renewable and energy sectors. Understanding the biofilm and microbiologically influenced corrosion interaction is hindered by the lack of robust and reproducible physical models that reflect operating environments. A novel dual anaerobic biofilm reactor, using a complex microbial consortium sampled from marine littoral sediment, allowed the electrochemical performance of UNS G10180 carbon steel to be studied simultaneously in anaerobic abiotic and biotic artificial seawater. Critically, DNA extraction and 16S rRNA amplicon sequencing demonstrated the principal biofilm activity was due to electroactive bacteria, specifically sulfate-reducing and iron-reducing bacteria.
海事、海上可再生能源和能源领域面临着微生物腐蚀带来的持续挑战。由于缺乏能够反映运行环境的可靠且可重复的物理模型,对生物膜与微生物影响腐蚀之间相互作用的理解受到了阻碍。一种新型的双厌氧生物膜反应器,使用从海洋沿岸沉积物中采集的复杂微生物群落,能够在厌氧非生物和生物人工海水中同时研究UNS G10180碳钢的电化学性能。至关重要的是,DNA提取和16S rRNA扩增子测序表明,主要的生物膜活性归因于电活性细菌,特别是硫酸盐还原菌和铁还原菌。