Suppr超能文献

通过机器学习建立临床预测模型以确定食物蛋白诱导的过敏性直肠结肠炎婴儿的母亲饮食回避结果。

Clinical prediction model by machine learning to determine the results of maternal dietary avoidance in food protein-induced allergic proctocolitis infants.

作者信息

Li Jing, Zhou Meng-Yao, Li Yang, Wu Xue, Li Xin, Xie Xiao-Li, Xiong Li-Jing

机构信息

Department of Pediatric Gastroenterology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Pediatr. 2025 May 16;13:1612076. doi: 10.3389/fped.2025.1612076. eCollection 2025.

Abstract

OBJECTIVE

The objective of this study was to investigate the factors associated with the results of maternal dietary avoidance in infants diagnosed with Food Protein-Induced Allergic Proctocolitis (FPIAP). Additionally, we aimed to develop a predictive model using machine learning techniques to forecast the results of maternal dietary restrictions.

METHODS

The clinical data of FPIAP infants were retrospectively analyzed. The FPIAP infants were divided into two groups based on the results of maternal dietary restriction, and an analysis was conducted to identify the influencing factors. Variable was selected by Lasso regression model. Classification models were built utilizing various machine learning algorithms including XGB Classifier, Logistic Regression, Random Forest Classifier, Ada Boost Classifier, KNeighbors Classifier, LGBM Classifier, Decision Tree Classifier, Gradient Boosting Classifier, Support Vector Classifier. The optimal algorithm was selected to construct the final prediction model.

RESULTS

In a retrospective cohort study of 693 children diagnosed with FPIAP, the remission rate associated with maternal dietary avoidance was 47.38%. The overall efficacy of hypoallergenic formula was 88.48%. Multivariate analysis identified several factors influencing the outcome of maternal dietary restriction, including age, disease duration, regurgitation, eczema, and neonatal history of hematochezia. Variables were selected and incorporated into multiple machine learning models. Among them, the logistic regression model demonstrated relatively high stability and was ultimately selected for modeling. The final model achieved an AUC of 0.743 in the test set and an accuracy of 0.699. The validation set's AUC was within 10% of the test set's value, indicating acceptable generalizability. The Hosmer-Lemeshow goodness-of-fit test confirmed that the logistic regression model fit the data well ( = 0.691 > 0.05). Finally, a nomogram was used to visualize the model's performance, and the Brier Score in the calibration curve was 0.210.

CONCLUSION

This study provided a predictive model for formulating individualized diagnostic strategies of suspected FIPAP infants. However, due to the limitations of the lack of prospective dataset validation, future studies should further validate the clinical application potential of the predictive model to improve the diagnostic efficiency and quality of life of FPIAP.

摘要

目的

本研究旨在调查与诊断为食物蛋白诱导的过敏性直肠结肠炎(FPIAP)的婴儿中母亲饮食回避结果相关的因素。此外,我们旨在使用机器学习技术开发一种预测模型,以预测母亲饮食限制的结果。

方法

对FPIAP婴儿的临床资料进行回顾性分析。根据母亲饮食限制的结果将FPIAP婴儿分为两组,并进行分析以确定影响因素。通过Lasso回归模型选择变量。利用包括XGB分类器、逻辑回归、随机森林分类器、Ada Boost分类器、K近邻分类器、LightGBM分类器、决策树分类器、梯度提升分类器、支持向量分类器在内的各种机器学习算法构建分类模型。选择最优算法构建最终预测模型。

结果

在一项对693例诊断为FPIAP的儿童进行的回顾性队列研究中,母亲饮食回避相关的缓解率为47.38%。低敏配方奶粉的总体有效率为88.48%。多因素分析确定了几个影响母亲饮食限制结果的因素,包括年龄、病程、反流、湿疹和新生儿便血史。选择变量并纳入多个机器学习模型。其中,逻辑回归模型表现出相对较高的稳定性,最终被选用于建模。最终模型在测试集中的AUC为0.743,准确率为0.699。验证集的AUC在测试集值的10%以内,表明具有可接受的泛化性。Hosmer-Lemeshow拟合优度检验证实逻辑回归模型与数据拟合良好(=0.691>0.05)。最后,使用列线图直观显示模型的性能,校准曲线中的Brier评分为0.210。

结论

本研究为制定疑似FIPAP婴儿的个体化诊断策略提供了一种预测模型。然而,由于缺乏前瞻性数据集验证的局限性,未来的研究应进一步验证该预测模型的临床应用潜力,以提高FPIAP的诊断效率和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be4f/12124124/2715e53042cb/fped-13-1612076-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验