Becker Simon, Lin Lin, Stubbs Kevin D
ETH Zurich, Institute for Mathematical Research, Rämistrasse 101, 8092 Zurich, Switzerland.
Department of Mathematics, University of California, Berkeley, CA 94720 USA.
Commun Math Phys. 2025;406(6):148. doi: 10.1007/s00220-025-05300-x. Epub 2025 May 30.
One of the most remarkable theoretical findings in magic angle twisted bilayer graphene (TBG) is the emergence of ferromagnetic Slater determinants as exact ground states for the interacting Hamiltonian at the chiral limit. This discovery provides an explanation for the correlated insulating phase which has been experimentally observed at half filling. This work is the first mathematical study of interacting models in magic angle graphene systems. These include not only TBG but also TBG-like systems featuring four flat bands per valley, and twisted trilayer graphene systems with equal twist angles. We identify symmetries of the chiral limit of the Bistritzer-MacDonald Hamiltonian that are responsible for characterizing the Hartree-Fock ground states as zero energy many-body ground states. Furthermore, for a general class of Hamiltonian, we establish criteria that the ferromagnetic Slater determinants are the unique ground states within the class of uniformly half-filled, translation invariant Slater determinants. We then demonstrate that these criteria can be explicitly verified for TBG and TBG-like systems at the chiral limit, using properties of Jacobi- and Weierstrass- functions.
魔角扭曲双层石墨烯(TBG)中最显著的理论发现之一是,在手性极限下,铁磁斯莱特行列式作为相互作用哈密顿量的精确基态出现。这一发现为在半填充时实验观测到的关联绝缘相提供了解释。这项工作是对魔角石墨烯系统中相互作用模型的首次数学研究。这些系统不仅包括TBG,还包括每个谷有四个平带的类TBG系统,以及具有相等扭转角的扭曲三层石墨烯系统。我们确定了比斯特里策尔 - 麦克唐纳哈密顿量手性极限的对称性,这些对称性负责将哈特里 - 福克基态表征为零能量多体基态。此外,对于一般类别的哈密顿量,我们建立了标准,即铁磁斯莱特行列式是均匀半填充、平移不变斯莱特行列式类中的唯一基态。然后,我们证明了利用雅可比函数和魏尔斯特拉斯函数的性质,可以在手性极限下对TBG和类TBG系统明确验证这些标准。