Suppr超能文献

基于图特征和预训练序列嵌入的多模态药物靶点亲和力预测

A Multi-modal Drug Target Affinity Prediction Based on Graph Features and Pre-trained Sequence Embeddings.

作者信息

Tang Xin, Lei Xiujuan, Liu Lian

机构信息

School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.

出版信息

Interdiscip Sci. 2025 Jun 2. doi: 10.1007/s12539-025-00713-7.

Abstract

With the advantages of reducing biochemical experiments and enabling the rapid screening of potential druggable compounds, accurate computational methods are essential for predicting Drug-Target affinity (DTA). Current deep learning-based DTA prediction methods predominantly concentrate on single-modal information from drugs or targets. In this article, we propose a new multi-modal DTA prediction method, MGSDTA, to integrate graph features and sequence features of drug molecules and target proteins. We extract features from the drug molecular graphs and target protein graphs, meanwhile, we extract sequence features using continuous embeddings generated by advanced self-supervised pre-trained models, Mol2vec and ProtVec, for drug substructures and target subsequences respectively. Finally, they are integrated with a weighted fusion module for DTA prediction. Experiments on benchmark datasets indicate that the performance of MGSDTA exceeds single-modal methods based solely on sequences or graphs.

摘要

由于具有减少生化实验以及能够快速筛选潜在可成药化合物的优点,精确的计算方法对于预测药物-靶点亲和力(DTA)至关重要。当前基于深度学习的DTA预测方法主要集中于来自药物或靶点的单模态信息。在本文中,我们提出了一种新的多模态DTA预测方法MGSDTA,以整合药物分子和靶蛋白的图形特征与序列特征。我们从药物分子图和靶蛋白图中提取特征,同时,我们分别使用由先进的自监督预训练模型Mol2vec和ProtVec生成的连续嵌入来提取药物子结构和靶标子序列的序列特征。最后,将它们与加权融合模块集成以进行DTA预测。在基准数据集上的实验表明,MGSDTA的性能超过了仅基于序列或图形的单模态方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验