Xie Ying-Yuan, Zhong Zhen-Dong, Chen Hong-Xuan, Ren Ze-Hui, Qiu Yuan-Tao, Lan Ye-Lin, Wu Fu, Kong Jin-Wen, Luo Ru-Jia, Zhang Delong, Liu Biao-Di, Shu Yang, Yin Feng, Wu Jian, Li Zigang, Zhang Zhang, Luo Guan-Zheng
State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
Sun Yat-sen University Institute of Advanced Studies Hong Kong, Science Park, Hong Kong SAR, 999077, China.
Nat Commun. 2025 Jun 2;16(1):5119. doi: 10.1038/s41467-025-60447-4.
N6-methyladenosine (m6A) is an essential RNA modification that regulates gene expression and influences diverse cellular processes. Yet, fully characterizing its transcriptome-wide landscape and biogenesis mechanisms remains challenging. Traditional next-generation sequencing (NGS) methods rely on short-reads aggregation, overlooking the inherent heterogeneity of RNA transcripts. Third-generation sequencing (TGS) platforms offer direct RNA sequencing (DRS) at the resolution of individual RNA molecules, enabling simultaneous detection of RNA modifications and RNA processing events. In this study, we introduce SingleMod, a deep learning model tailored for precise detection of m6A modification on individual RNA molecules from DRS data. SingleMod innovatively employs a multiple instance regression (MIR) framework, leveraging extensive methylation-rate labels provided by the quantitative NGS-based method, and achieves ROC AUC and PR AUC of ~0.95 for single-molecule m6A prediction. Applying SingleMod to human cell lines, we systematically dissect the transcriptome-wide m6A landscape at single-molecule and single-base resolution, characterizing m6A heterogeneity in RNA molecules from the same transcript. Through comparative analyzes across eight diverse species, we quantitatively elucidate three distinct m6A distribution patterns correlated with phylogenetic relationships and suggest divergent regulatory mechanisms. This study provides a framework for understanding the shaping of epitranscriptome in a single-molecule perspective.
N6-甲基腺苷(m6A)是一种重要的RNA修饰,可调节基因表达并影响多种细胞过程。然而,全面表征其全转录组图谱和生物发生机制仍然具有挑战性。传统的下一代测序(NGS)方法依赖于短读段聚集,忽略了RNA转录本固有的异质性。第三代测序(TGS)平台能够在单个RNA分子的分辨率下进行直接RNA测序(DRS),从而能够同时检测RNA修饰和RNA加工事件。在本研究中,我们介绍了SingleMod,这是一种深度学习模型,专门用于从DRS数据中精确检测单个RNA分子上的m6A修饰。SingleMod创新性地采用了多实例回归(MIR)框架,利用基于定量NGS方法提供的大量甲基化率标签,在单分子m6A预测中实现了约0.95的ROC AUC和PR AUC。将SingleMod应用于人类细胞系,我们在单分子和单碱基分辨率下系统地剖析了全转录组范围的m6A图谱,表征了来自同一转录本的RNA分子中的m6A异质性。通过对八个不同物种的比较分析,我们定量阐明了与系统发育关系相关的三种不同的m6A分布模式,并提出了不同的调控机制。本研究提供了一个从单分子角度理解表观转录组形成的框架。