Suppr超能文献

下肢静脉曲张门诊患者髂静脉压迫综合征临床预测模型的开发与验证

Development and validation of a clinical prediction model for Iliac vein compression syndrome in outpatients with varicose veins of the lower extremities.

作者信息

Zhou Hong-Hua, Hu Lili, Li Zhen, Hu Hai

机构信息

Department of General Surgery, Jiujiang University Affiliated Hospital, Jiujiang, China.

Department of Pediatrics, Nanchang People's Hospital, Nanchang, China.

出版信息

Sci Rep. 2025 Jun 2;15(1):19250. doi: 10.1038/s41598-025-04175-1.

Abstract

To develop and validate a clinical prediction model for Iliac Vein Compression Syndrome (IVCS) in outpatients with Varicose veins of the lower extremities (VVLE), to aid clinical decision-making and early identification of high-risk patients. A retrospective cohort study was conducted, including 732 outpatients diagnosed with VVLE between 2014 and 2023. Independent predictors of IVCS were identified through multivariable logistic regression, and a nomogram was developed. The model was evaluated using receiver operating characteristic (ROC) curve analysis, calibration curves, and decision curve analysis (DCA). Four independent predictors for IVCS were identified: history of deep vein thrombosis (DVT), history of vascular interventions, pain symptoms, and Clinical Etiological Anatomical Pathophysiological (CEAP) grade. The nomogram showed strong performance, with an area under the ROC curve (AUC) of 0.79 in the training set and 0.74 in the validation set. of 0.79 in the training set and 0.74 in the validation set. Calibration curves confirmed good agreement between predicted and observed outcomes. DCA demonstrated the clinical utility of the model across different risk thresholds. A simple and cost-effective nomogram for predicting IVCS in VVLE patients was developed and validated. This tool helps outpatient clinicians identify high-risk IVCS patients early, supporting personalized treatment strategies. Further validation is needed, but the model holds promise for improving early diagnosis and patient outcomes.

摘要

为开发并验证一种针对下肢静脉曲张(VVLE)门诊患者的髂静脉压迫综合征(IVCS)临床预测模型,以辅助临床决策并早期识别高危患者。开展了一项回顾性队列研究,纳入了2014年至2023年间诊断为VVLE的732例门诊患者。通过多变量逻辑回归确定IVCS的独立预测因素,并绘制了列线图。使用受试者工作特征(ROC)曲线分析、校准曲线和决策曲线分析(DCA)对该模型进行评估。确定了IVCS的四个独立预测因素:深静脉血栓形成(DVT)病史、血管介入史、疼痛症状和临床病因解剖病理生理(CEAP)分级。列线图表现良好,训练集的ROC曲线下面积(AUC)为0.79,验证集为0.74。校准曲线证实预测结果与观察结果之间具有良好的一致性。DCA证明了该模型在不同风险阈值下的临床实用性。开发并验证了一种用于预测VVLE患者IVCS的简单且经济高效的列线图。该工具可帮助门诊临床医生早期识别高危IVCS患者,支持个性化治疗策略。尽管需要进一步验证,但该模型有望改善早期诊断和患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf9/12130496/7a6a23f136e6/41598_2025_4175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验