Suppr超能文献

木聚糖分解代谢在极端嗜热菌中由转录因子XynR和XylR的协同作用调控。

Xylanolytic metabolism is regulated by coordination of transcription factors XynR and XylR in extremely thermophilic .

作者信息

Manesh Mohamad J H, Crosby James R, Laemthong Tunyaboon, Bing Ryan G, Chen Stefanie H, Vailionis Jason, Tanwee Tania N N, Zhang Ying, Rodionov Dmitry A, Adams Michael W W, Kelly Robert M

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.

Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

Appl Environ Microbiol. 2025 Jul 23;91(7):e0051625. doi: 10.1128/aem.00516-25. Epub 2025 Jun 4.

Abstract

Global transcription factors (TFs) control metabolic processes in bacteria to efficiently utilize available carbon. The order has drawn interest due to the ability of its members to degrade components of lignocellulosic biomass. Regulatory reconstruction of identified two major global transcription factors for xylan utilization, XynR and XylR, and the corresponding putative transcription factor binding sites. Recombinant versions of XynR (LacI family) and XylR (ROK family) were subjected to fluorescence polarization (FP) and biolayer interferometry (BLI) analysis to confirm the predicted binding sites. Four XynR sites and two XylR sites were validated, accounting for 20 of 26 genes regulated by XynR and six of seven genes regulated by XylR. Bioinformatic analysis of the individual genes controlled by the two regulators showed an inter-dependent scheme for xylan conversion; the transport of xylooligosaccharides (XOS) is dependent on XylR, while enzymes responsible for hydrolysis are controlled by both regulators. For xylose catabolism by the xylose isomerase-xylulose kinase pathway, regulation is also split, with XylR controlling xylose isomerase and XynR controlling xylokinase. The XynR/XylR regulator pair within is conserved in all sequenced species of , suggesting similarities in regulating linear xylan conversion. In other xylanolytic thermophiles, XylR homologs control xylan degradation, compared to just 6 out of 26 genes for . These results show that two separate regulatory schemes (dual repression) are coordinated by to effectively regulate the hemicellulose inventory and xylan catabolism.IMPORTANCETo take full advantage of extreme thermophiles as platform metabolic engineering microorganisms, the tools for genetic manipulation must be further developed, and strategies that exploit a better understanding of metabolic regulation need to be discerned. , the most studied of the extremely thermophilic fermentative anaerobic bacteria that can utilize microcrystalline cellulose, can degrade microcrystalline cellulose and hemicellulose and has been metabolically engineered to convert the resulting sugars to products such as ethanol and acetone. For xylan, in particular, two major global transcription factors (TFs), XynR and XylR, play a role in sugar metabolism, although their predicted regulatory interdependence from bioinformatics analysis has not been elucidated experimentally. Here, fluorescence polarization (FP) and biolayer interferometry (BLI) were used to explore this issue to support metabolic engineering efforts aimed at improving carbohydrate processing to industrial chemicals.

摘要

全局转录因子(TFs)控制细菌中的代谢过程,以有效利用可用碳源。由于该菌属成员能够降解木质纤维素生物质成分,因此受到了关注。对该菌属的调控重建鉴定出两个用于木聚糖利用的主要全局转录因子,即XynR和XylR,以及相应的假定转录因子结合位点。对XynR(LacI家族)和XylR(ROK家族)的重组版本进行了荧光偏振(FP)和生物层干涉术(BLI)分析,以确认预测的结合位点。验证了四个XynR位点和两个XylR位点,分别占XynR调控的26个基因中的20个以及XylR调控的7个基因中的6个。对由这两个调控因子控制的单个基因进行的生物信息学分析显示,木聚糖转化存在相互依赖的机制;低聚木糖(XOS)的转运依赖于XylR,而负责水解的酶则由两个调控因子共同控制。对于通过木糖异构酶-木酮糖激酶途径进行的木糖分解代谢,调控也存在分工,XylR控制木糖异构酶,XynR控制木酮糖激酶。该菌属内的XynR/XylR调控因子对在所有已测序的该菌属物种中都是保守的,这表明在调控线性木聚糖转化方面存在相似性。在其他木聚糖分解嗜热菌中,XylR同源物控制木聚糖降解,而在该菌属中,26个基因中只有6个受其控制。这些结果表明,该菌属协调了两种独立的调控机制(双重抑制),以有效调控半纤维素库存和木聚糖分解代谢。

重要性

为了充分利用嗜热菌作为平台代谢工程微生物,必须进一步开发基因操作工具,并识别出利用对代谢调控的更好理解的策略。嗜热栖热菌是研究最多的能够利用微晶纤维素的嗜热发酵厌氧细菌,它可以降解微晶纤维素和半纤维素,并且已经进行了代谢工程改造,以将产生的糖转化为乙醇和丙酮等产品。特别是对于木聚糖,两个主要的全局转录因子(TFs),即XynR和XylR,在糖代谢中发挥作用,尽管从生物信息学分析预测的它们的调控相互依赖性尚未通过实验阐明。在这里,使用荧光偏振(FP)和生物层干涉术(BLI)来探讨这个问题,以支持旨在将碳水化合物加工改进为工业化学品的代谢工程努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc78/12285236/f447b7a76175/aem.00516-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验