Suppr超能文献

嗜热微生物对天然和转基因木质纤维素的解构和转化。

Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.

Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.

出版信息

Environ Microbiol Rep. 2021 Jun;13(3):272-293. doi: 10.1111/1758-2229.12943. Epub 2021 Mar 16.

Abstract

The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.

摘要

通过微生物过程将可再生植物生物质转化为燃料和化学品具有吸引力,它是一种对基于化石燃料的传统路线的替代方案,环境影响更小。这最好是通过天然分解木质纤维素并同时形成工业相关产品的微生物来完成,但这两种生理和代谢特征在自然界中很少同时观察到。可以对植物原料和微生物进行遗传修饰,以提高木质纤维素的分解能力并生成工业相关产品。正在对植物和微生物分别进行研究,但这些研究缺乏对这些不同生物系统的最佳互补组合的关注,以获得趋同技术。用于植物的遗传工具的改进导致了低木质素系的产生,这些系更容易被微生物溶解。由于其降解木质纤维素的能力以及通过代谢工程策略形成生物产品的能力,大多数研究都集中在热嗜热菌属(如 Caldicellulosiruptor 和 Clostridium)上,因为它们具有代谢工程策略的能力,并且由于分子遗传学工具的不断改进,这些策略使微生物能够形成生物产品。对植物特性进行生物工程改造,使其更适合候选的综合生物加工微生物的分解能力,有可能实现工业相关性所需的高效木质纤维素分解。

相似文献

4
Thermophilic lignocellulose deconstruction.嗜热木质纤维素的解构。
FEMS Microbiol Rev. 2014 May;38(3):393-448. doi: 10.1111/1574-6976.12044. Epub 2013 Nov 13.
10

引用本文的文献

本文引用的文献

6
Transgenic Poplar Designed for Biofuels.转基因杨树,专为生物燃料设计。
Trends Plant Sci. 2020 Sep;25(9):881-896. doi: 10.1016/j.tplants.2020.03.008. Epub 2020 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验