基于扩展的AIDUA模型探索AIGC使用意愿的影响因素:多组结构方程模型分析
Exploring the determinants of AIGC usage intention based on the extended AIDUA model: a multi-group structural equation modeling analysis.
作者信息
Bai Xueyan, Yang Lin
机构信息
School of Journalism and New Media, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Research Center of New Media and Rural Revitalization, Xi'an, Shaanxi, China.
出版信息
Front Psychol. 2025 May 21;16:1589318. doi: 10.3389/fpsyg.2025.1589318. eCollection 2025.
OBJECTIVE
With the rapid development and widespread adoption of generative artificial intelligence (GenAI) technologies, their unique characteristics-such as conversational capabilities, creative intelligence, and continuous evolution-have posed challenges for traditional technology acceptance models (TAMs) in adequately explaining user adoption intentions. To better understand the key factors influencing users' acceptance of GenAI, this study extends the AIDUA model by incorporating system compatibility, technology transparency, and human-computer interaction perception. These variables are introduced to systematically explore the determinants of users' intention to adopt GenAI. Furthermore, the study examines the varying mechanisms of influence across different user groups and application scenarios, providing theoretical insights and practical guidance for optimizing and promoting GenAI technologies.
METHODS
During the data collection phase, this study employed a survey method to measure behavioral intentions and other key variables within the proposed framework. The survey design included demographic information about the respondents as well as detailed information related to their use of GenAI. In the data processing and analysis phase, a Structural Equation Modeling (SEM) approach was utilized to systematically examine the path relationships among the variables. Additionally, to compare the differences in variable relationships across different subgroups, a multi-group structural equation modeling(MGSEM) analysis was conducted.
RESULTS
(1) Effects on Key Expectations: Social influence significantly enhances performance expectancy (β = 0.109, < 0.05) but negatively impacts effort expectancy (β = -0.135, < 0.01). Hedonic motivation notably mitigates effort expectancy (β = -0.460, < 0.001), yet shows no significant effect on performance expectancy (β = 0.396, = 0.76). The newly extended variables-technological transparency (β = 0.428, < 0.001), system compatibility (β = 0.394, < 0.001), and human-computer interaction perception (β = 0.326, < 0.001)-demonstrate positive influences on performance expectancy while generally mitigating effort expectancy. (2) Emotional Mechanisms: Performance expectancy significantly mitigates negative emotions (β = -0.446, < 0.01), while effort expectancy significantly increases negative emotions (β = 0.493, < 0.001). Negative emotions exert a significant negative influence on usage intention (β = -0.256, < 0.001). (3) The MGSEM analysis revealed significant heterogeneity in the extended AIDUA model paths across different user segments. Specifically, systematic variations were observed across demographic characteristics (gender, age, and educational level), occupational backgrounds, and usage patterns (task types and AI tool preferences). These findings underscore the heterogeneous nature of generative AI acceptance mechanisms across diverse user populations and usage contexts.
DISCUSSION
This study reveals several key findings within the extended AIDUA model. Our results indicate that technological transparency emerges as the strongest predictor of performance expectancy, alongside system compatibility and human-computer interaction perception, significantly enhancing users' perceived system performance. Regarding effort expectancy, hedonic motivation and technological transparency demonstrate the most prominent effects, implying that system design should emphasize user experience enjoyability and transparency. Notably, the lack of significant influence of hedonic motivation on performance expectancy, contradicting our initial hypothesis. Furthermore, the MGSEM analysis reveals significant heterogeneity in acceptance mechanisms across user groups, providing crucial implications for the differentiated design of GenAI systems tailored to diverse user needs.
目的
随着生成式人工智能(GenAI)技术的迅速发展和广泛应用,其独特特性,如对话能力、创造性智能和持续进化,给传统技术接受模型(TAM)充分解释用户采用意图带来了挑战。为了更好地理解影响用户接受GenAI的关键因素,本研究通过纳入系统兼容性、技术透明度和人机交互感知来扩展AIDUA模型。引入这些变量以系统地探究用户采用GenAI意图的决定因素。此外,该研究考察了不同用户群体和应用场景中不同的影响机制,为优化和推广GenAI技术提供理论见解和实践指导。
方法
在数据收集阶段,本研究采用调查方法来测量所提出框架内的行为意图和其他关键变量。调查设计包括受访者的人口统计学信息以及与其使用GenAI相关的详细信息。在数据处理和分析阶段,利用结构方程建模(SEM)方法系统地检验变量之间的路径关系。此外,为了比较不同子群体中变量关系的差异,进行了多组结构方程建模(MGSEM)分析。
结果
(1)对关键期望的影响:社会影响显著增强绩效期望(β = 0.109,p < 0.05),但对努力期望有负面影响(β = -0.135,p < 0.01)。享乐动机显著减轻努力期望(β = -0.460,p < 0.001),但对绩效期望无显著影响(β = 0.396,p = 0.76)。新扩展的变量——技术透明度(β = 0.428,p < 0.001)、系统兼容性(β = 0.394,p < 0.001)和人机交互感知(β = 0.326,p < 0.001)——对绩效期望有积极影响,同时总体上减轻努力期望。(2)情感机制:绩效期望显著减轻负面情绪(β = -0.446,p < 0.01),而努力期望显著增加负面情绪(β = 0.493,p < 0.001)。负面情绪对使用意图有显著负面影响(β = -0.256,p < 0.001)。(3)MGSEM分析显示,扩展的AIDUA模型路径在不同用户群体中存在显著异质性。具体而言,在人口统计学特征(性别、年龄和教育水平)、职业背景和使用模式(任务类型和AI工具偏好)方面观察到系统差异。这些发现强调了生成式AI接受机制在不同用户群体和使用背景下的异质性。
讨论
本研究在扩展的AIDUA模型中揭示了几个关键发现。我们的结果表明,技术透明度与系统兼容性和人机交互感知一样,成为绩效期望的最强预测因素,显著提高了用户对系统性能的感知。关于努力期望,享乐动机和技术透明度显示出最突出的影响,这意味着系统设计应强调用户体验的愉悦性和透明度。值得注意的是,享乐动机对绩效期望缺乏显著影响,这与我们最初的假设相矛盾。此外,MGSEM分析揭示了不同用户群体接受机制的显著异质性,为根据不同用户需求定制GenAI系统的差异化设计提供了关键启示。