Prescott Samuel, Iyer Prasad P, Addamane Sadhvikas, Jung Hyunseung, Luk Ting S, Brener Igal, Mitrofanov Oleg
Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK.
Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, NM, USA.
Nanophotonics. 2024 Oct 17;14(11):1917-1925. doi: 10.1515/nanoph-2024-0300. eCollection 2025 Jun.
Solid-state quantum emitters (QE) can produce single photons required for quantum information processing. However, their emission properties often exhibit poor directivity and polarisation definition resulting in considerable loss of generated photons. Here we propose and numerically evaluate Mie metasurface designs for outcoupling photons from an embedded and randomly-positioned QE. These Mie metasurface designs can provide over one order of magnitude enhancement in photon outcoupling with only several percent of photons being lost. Importantly, the Mie metasurfaces provide the enhancement in photon outcoupling without the need for strict QE position alignment and without affecting the intrinsic QE emission rate (Purcell enhancement). Electric dipole modes are key for achieving the enhancement and they offer a path for selective outcoupling for photons emitted with specific polarisation, including the out-of-plane polarisation. Mie metasurfaces can provide an efficient, polarisation-selective and scalable platform for QEs.
固态量子发射器(QE)可产生量子信息处理所需的单光子。然而,它们的发射特性往往表现出较差的方向性和偏振定义,导致产生的光子大量损失。在此,我们提出并通过数值评估米氏超表面设计,用于从嵌入且随机定位的量子发射器中耦合出光子。这些米氏超表面设计可在光子耦合方面提供超过一个数量级的增强,仅有百分之几的光子损失。重要的是,米氏超表面在无需严格的量子发射器位置对准且不影响量子发射器固有发射率(珀塞尔增强)的情况下实现了光子耦合增强。电偶极模式是实现这种增强的关键,它们为具有特定偏振(包括面外偏振)发射的光子提供了一种选择性耦合途径。米氏超表面可为量子发射器提供一个高效、偏振选择性且可扩展的平台。