Suppr超能文献

ReBaCCA-ss:用于量化群体发放活动之间相似性的具有平滑和替代功能的相关性平衡连续体相关分析

ReBaCCA-ss: Relevance-Balanced Continuum Correlation Analysis with Smoothing and Surrogating for Quantifying Similarity Between Population Spiking Activities.

作者信息

Zhang Xiang, Xu Chenlin, Lu Zhouxiao, Wang Haonan, Song Dong

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States.

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States.

出版信息

ArXiv. 2025 May 19:arXiv:2505.13748v1.

Abstract

Quantifying similarity between population spike patterns is essential for understanding how neural dynamics encode information. Traditional approaches, which combine kernel smoothing, PCA, and CCA, have limitations: smoothing kernel bandwidths are often empirically chosen, CCA maximizes alignment between patterns without considering the variance explained within patterns, and baseline correlations from stochastic spiking are rarely corrected. We introduce ReBaCCA-ss (Relevance-Balanced Continuum Correlation Analysis with smoothing and surrogating), a novel framework that addresses these challenges through three innovations: (1) balancing alignment and variance explanation via continuum canonical correlation; (2) correcting for noise using surrogate spike trains; and (3) selecting the optimal kernel bandwidth by maximizing the difference between true and surrogate correlations. ReBaCCA-ss is validated on both simulated data and hippocampal recordings from rats performing a Delayed Nonmatch-to-Sample task. It reliably identifies spatio-temporal similarities between spike patterns. Combined with Multidimensional Scaling, ReBaCCA-ss reveals structured neural representations across trials, events, sessions, and animals, offering a powerful tool for neural population analysis.

摘要

量化群体放电模式之间的相似性对于理解神经动力学如何编码信息至关重要。传统方法结合了核平滑、主成分分析(PCA)和典型相关分析(CCA),但存在局限性:平滑核带宽通常凭经验选择,CCA在最大化模式间对齐时未考虑模式内解释的方差,并且很少校正随机放电产生的基线相关性。我们引入了ReBaCCA-ss(带平滑和替代的相关性平衡连续典型相关分析),这是一个新颖的框架,通过三项创新解决了这些挑战:(1)通过连续典型相关平衡对齐和方差解释;(2)使用替代放电序列校正噪声;(3)通过最大化真实相关性与替代相关性之间的差异来选择最佳核带宽。ReBaCCA-ss在模拟数据和执行延迟非匹配样本任务的大鼠海马记录上均得到验证。它能可靠地识别放电模式之间的时空相似性。与多维缩放相结合,ReBaCCA-ss揭示了跨试验、事件、会话和动物的结构化神经表征,为神经群体分析提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcdd/12136485/dcbdd11610e0/nihpp-2505.13748v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验