Suppr超能文献

使用降维技术将大规模神经元记录和大规模网络模型联系起来。

Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction.

机构信息

Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Curr Opin Neurobiol. 2019 Apr;55:40-47. doi: 10.1016/j.conb.2018.12.009. Epub 2019 Jan 22.

Abstract

A long-standing goal in neuroscience has been to bring together neuronal recordings and neural network modeling to understand brain function. Neuronal recordings can inform the development of network models, and network models can in turn provide predictions for subsequent experiments. Traditionally, neuronal recordings and network models have been related using single-neuron and pairwise spike train statistics. We review here recent studies that have begun to relate neuronal recordings and network models based on the multi-dimensional structure of neuronal population activity, as identified using dimensionality reduction. This approach has been used to study working memory, decision making, motor control, and more. Dimensionality reduction has provided common ground for incisive comparisons and tight interplay between neuronal recordings and network models.

摘要

神经科学的一个长期目标是将神经元记录和神经网络模型结合起来,以理解大脑功能。神经元记录可以为网络模型的发展提供信息,而网络模型反过来又可以为后续的实验提供预测。传统上,神经元记录和网络模型是通过单神经元和成对尖峰时间序列统计来关联的。在这里,我们回顾了最近的一些研究,这些研究开始根据神经元群体活动的多维结构来关联神经元记录和网络模型,这种多维结构是通过降维来识别的。这种方法已被用于研究工作记忆、决策、运动控制等。降维为神经元记录和网络模型之间的尖锐比较和紧密相互作用提供了共同基础。

相似文献

2
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models.神经群体与网络模型降维的标度性质
PLoS Comput Biol. 2016 Dec 7;12(12):e1005141. doi: 10.1371/journal.pcbi.1005141. eCollection 2016 Dec.
3
Bridging neuronal correlations and dimensionality reduction.桥接神经元相关性和降维。
Neuron. 2021 Sep 1;109(17):2740-2754.e12. doi: 10.1016/j.neuron.2021.06.028. Epub 2021 Jul 21.
5
Inferring neuronal network functional connectivity with directed information.利用定向信息推断神经网络功能连接性。
J Neurophysiol. 2017 Aug 1;118(2):1055-1069. doi: 10.1152/jn.00086.2017. Epub 2017 May 3.
7
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.从积分发放网络模型计算局部场电位(LFP)
PLoS Comput Biol. 2015 Dec 14;11(12):e1004584. doi: 10.1371/journal.pcbi.1004584. eCollection 2015 Dec.
9
A Deep Learning Approach for the Classification of Neuronal Cell Types.一种用于神经元细胞类型分类的深度学习方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:999-1002. doi: 10.1109/EMBC.2018.8512498.

引用本文的文献

8
Computational role of structure in neural activity and connectivity.结构在神经活动和连接中的计算作用。
Trends Cogn Sci. 2024 Jul;28(7):677-690. doi: 10.1016/j.tics.2024.03.003. Epub 2024 Mar 28.
9
Preparatory activity and the expansive null-space.预备活动与扩张零空间。
Nat Rev Neurosci. 2024 Apr;25(4):213-236. doi: 10.1038/s41583-024-00796-z. Epub 2024 Mar 5.

本文引用的文献

1
Cortical Areas Interact through a Communication Subspace.皮质区域通过通信子空间相互作用。
Neuron. 2019 Apr 3;102(1):249-259.e4. doi: 10.1016/j.neuron.2019.01.026. Epub 2019 Feb 12.
2
Circuit Models of Low-Dimensional Shared Variability in Cortical Networks.皮层网络中低维共享可变性的电路模型。
Neuron. 2019 Jan 16;101(2):337-348.e4. doi: 10.1016/j.neuron.2018.11.034. Epub 2018 Dec 20.
3
A Neural Population Mechanism for Rapid Learning.一种用于快速学习的神经群体机制。
Neuron. 2018 Nov 21;100(4):964-976.e7. doi: 10.1016/j.neuron.2018.09.030. Epub 2018 Oct 18.
5
A Dynamical Systems Perspective on Flexible Motor Timing.从动力系统的角度看灵活的运动定时。
Trends Cogn Sci. 2018 Oct;22(10):938-952. doi: 10.1016/j.tics.2018.07.010.
7
Constraints on neural redundancy.神经冗余的约束。
Elife. 2018 Aug 15;7:e36774. doi: 10.7554/eLife.36774.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验