Suppr超能文献

剖析生物分子凝聚物交换动力学中的限速过程。

Dissecting Rate-Limiting Processes in Biomolecular Condensate Exchange Dynamics.

作者信息

Kliegman Ross, Kengmana Eli, Schulman Rebecca, Zhang Yaojun

机构信息

Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

bioRxiv. 2025 May 22:2025.05.16.654578. doi: 10.1101/2025.05.16.654578.

Abstract

An increasing number of biomolecules have been shown to phase-separate into biomolecular condensates - membraneless subcellular compartments capable of regulating distinct biochemical processes within living cells. The speed with which they exchange components with the cellular environment can influence how fast biochemical reactions occur inside condensates and how fast condensates respond to environmental changes, thereby directly impacting condensate function. While Fluorescence Recovery After Photobleaching (FRAP) experiments are routinely performed to measure this exchange timescale, it remains a challenge to distinguish the various physical processes limiting fluorescence recovery and identify each associated timescale. Here, we present a reaction-diffusion model for condensate exchange dynamics and show that such exchange can differ significantly from that of conventional liquid droplets due to the presence of a percolated molecular network, which gives rise to different mobility species in the dense phase. In this model, exchange can be limited by diffusion of either the high- or low-mobility species in the dense phase, diffusion in the dilute phase, or the attachment/detachment of molecules to/from the network at the surface or throughout the bulk of the condensate. Through a combination of analytic derivations and numerical simulations in each of these limits, we quantify the contributions of these distinct physical processes to the overall exchange timescale. Demonstrated on a biosynthetic DNA nanostar system, our model offers insight into the predominant physical mechanisms driving condensate material exchange and provides an experimentally testable scaling relationship between the exchange timescale and condensate size. Interestingly, we observe a newly predicted regime in which the exchange timescale scales nonquadratically with condensate size.

摘要

越来越多的生物分子已被证明会相分离形成生物分子凝聚物——无膜亚细胞区室,能够调节活细胞内不同的生化过程。它们与细胞环境交换成分的速度会影响凝聚物内部生化反应发生的速度以及凝聚物对环境变化的响应速度,从而直接影响凝聚物的功能。虽然常规进行光漂白后荧光恢复(FRAP)实验来测量这种交换时间尺度,但区分限制荧光恢复的各种物理过程并确定每个相关的时间尺度仍然是一个挑战。在这里,我们提出了一个用于凝聚物交换动力学的反应扩散模型,并表明由于存在渗透分子网络,这种交换可能与传统液滴的交换有显著差异,这会在致密相中产生不同的迁移率物种。在这个模型中,交换可能受到致密相中高迁移率或低迁移率物种的扩散、稀相中扩散或分子在凝聚物表面或整个体积内与网络的附着/脱离的限制。通过在这些极限情况下的解析推导和数值模拟相结合,我们量化了这些不同物理过程对整体交换时间尺度的贡献。在一个生物合成DNA纳米星系统上得到验证,我们的模型深入了解了驱动凝聚物物质交换的主要物理机制,并提供了交换时间尺度与凝聚物大小之间的一个可通过实验测试的标度关系。有趣的是,我们观察到一个新预测的 regime,其中交换时间尺度与凝聚物大小呈非二次方标度关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06eb/12139985/d88fbc1d8b93/nihpp-2025.05.16.654578v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验