Suppr超能文献

从头药物设计的计算方法:过去、现在和未来。

Computational Approaches for De Novo Drug Design: Past, Present, and Future.

机构信息

Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.

出版信息

Methods Mol Biol. 2021;2190:139-165. doi: 10.1007/978-1-0716-0826-5_6.

Abstract

Drug discovery is time- and resource-consuming. To this end, computational approaches that are applied in de novo drug design play an important role to improve the efficiency and decrease costs to develop novel drugs. Over several decades, a variety of methods have been proposed and applied in practice. Traditionally, drug design problems are always taken as combinational optimization in discrete chemical space. Hence optimization methods were exploited to search for new drug molecules to meet multiple objectives. With the accumulation of data and the development of machine learning methods, computational drug design methods have gradually shifted to a new paradigm. There has been particular interest in the potential application of deep learning methods to drug design. In this chapter, we will give a brief description of these two different de novo methods, compare their application scopes and discuss their possible development in the future.

摘要

药物发现既耗时又耗资源。为此,应用于从头药物设计的计算方法在提高效率和降低新药开发成本方面发挥着重要作用。几十年来,已经提出并应用了多种方法。传统上,药物设计问题总是被视为离散化学空间中的组合优化。因此,优化方法被用来寻找新的药物分子以满足多个目标。随着数据的积累和机器学习方法的发展,计算药物设计方法已经逐渐转向一个新的范式。深度学习方法在药物设计中的潜在应用引起了特别的关注。在本章中,我们将简要描述这两种不同的从头方法,比较它们的应用范围,并讨论它们未来可能的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验