Attar M Aykut, Tekin-Koru Ayça
Dept. of Economics, FEAS, Hacettepe University, Beytepe Campus, 06800, Cankaya, Ankara, Turkey.
Dept. of Economics, TED University, Ziya Gökalp Caddesi, No.47, 06420, Cankaya, Ankara, Turkey.
Econ Syst. 2022 Mar;46(1):100944. doi: 10.1016/j.ecosys.2022.100944. Epub 2022 Feb 3.
It is not directly observable how effectively a society practices social distancing during the COVID-19 pandemic. This paper proposes a novel and robust methodology to identify latent social distancing at the country level. We extend the Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) model with a time-varying, country-specific distancing term, and derive the odel-nferred tancing index (MIDIS) for 120 countries using readily available epidemiological data. The index is not sensitive to measurement errors in epidemiological data and to the values assigned to model parameters. The evolution of MIDIS shows that countries exhibit diverse patterns of distancing during the first wave of the COVID-19 pandemic-a persistent increase, a trendless fluctuation, and an inverted U are among these patterns. We then implement regression analyses using MIDIS and obtain the following results: First, MIDIS is strongly correlated with available mobility statistics, at least for high income countries. Second, MIDIS is also strongly associated with (i) the stringency of lockdown measures (governmental response), (ii) the cumulative number of deceased persons (behavioral response), and (iii) the time that passed since the first confirmed case (temporal response). Third, there is statistically significant regional variation in MIDIS, and more developed societies achieve higher distancing levels. Finally, MIDIS is used to explain output losses experienced during the pandemic, and it is shown that there is a robust positive relationship between the two, with sizable economic effects.
在新冠疫情期间,一个社会实施社交距离措施的效果如何并不能直接观察到。本文提出了一种新颖且稳健的方法来识别国家层面潜在的社交距离。我们通过一个随时间变化、特定国家的社交距离项扩展了易感-暴露-感染-康复-死亡(SEIRD)模型,并利用现有的流行病学数据推导出了120个国家的模型推断社交距离指数(MIDIS)。该指数对流行病学数据中的测量误差以及分配给模型参数的值不敏感。MIDIS的演变表明,在新冠疫情第一波期间,各国呈现出不同的社交距离模式——持续增加、无趋势波动以及倒U形等都在这些模式之中。然后,我们使用MIDIS进行回归分析并得到以下结果:第一,MIDIS与现有的出行统计数据密切相关,至少对于高收入国家是这样。第二,MIDIS还与(i)封锁措施的严格程度(政府应对措施)、(ii)死亡累计人数(行为应对措施)以及(iii)自首例确诊病例以来经过的时间(时间应对措施)密切相关。第三,MIDIS在统计上存在显著的区域差异,且更发达的社会实现了更高的社交距离水平。最后,MIDIS被用于解释疫情期间经历的产出损失,结果表明两者之间存在稳健的正相关关系,且具有相当大的经济影响。