Suppr超能文献

潜在的社交距离:识别、成因及后果

Latent social distancing: Identification, causes and consequences.

作者信息

Attar M Aykut, Tekin-Koru Ayça

机构信息

Dept. of Economics, FEAS, Hacettepe University, Beytepe Campus, 06800, Cankaya, Ankara, Turkey.

Dept. of Economics, TED University, Ziya Gökalp Caddesi, No.47, 06420, Cankaya, Ankara, Turkey.

出版信息

Econ Syst. 2022 Mar;46(1):100944. doi: 10.1016/j.ecosys.2022.100944. Epub 2022 Feb 3.

Abstract

It is not directly observable how effectively a society practices social distancing during the COVID-19 pandemic. This paper proposes a novel and robust methodology to identify latent social distancing at the country level. We extend the Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) model with a time-varying, country-specific distancing term, and derive the odel-nferred tancing index (MIDIS) for 120 countries using readily available epidemiological data. The index is not sensitive to measurement errors in epidemiological data and to the values assigned to model parameters. The evolution of MIDIS shows that countries exhibit diverse patterns of distancing during the first wave of the COVID-19 pandemic-a persistent increase, a trendless fluctuation, and an inverted U are among these patterns. We then implement regression analyses using MIDIS and obtain the following results: First, MIDIS is strongly correlated with available mobility statistics, at least for high income countries. Second, MIDIS is also strongly associated with (i) the stringency of lockdown measures (governmental response), (ii) the cumulative number of deceased persons (behavioral response), and (iii) the time that passed since the first confirmed case (temporal response). Third, there is statistically significant regional variation in MIDIS, and more developed societies achieve higher distancing levels. Finally, MIDIS is used to explain output losses experienced during the pandemic, and it is shown that there is a robust positive relationship between the two, with sizable economic effects.

摘要

在新冠疫情期间,一个社会实施社交距离措施的效果如何并不能直接观察到。本文提出了一种新颖且稳健的方法来识别国家层面潜在的社交距离。我们通过一个随时间变化、特定国家的社交距离项扩展了易感-暴露-感染-康复-死亡(SEIRD)模型,并利用现有的流行病学数据推导出了120个国家的模型推断社交距离指数(MIDIS)。该指数对流行病学数据中的测量误差以及分配给模型参数的值不敏感。MIDIS的演变表明,在新冠疫情第一波期间,各国呈现出不同的社交距离模式——持续增加、无趋势波动以及倒U形等都在这些模式之中。然后,我们使用MIDIS进行回归分析并得到以下结果:第一,MIDIS与现有的出行统计数据密切相关,至少对于高收入国家是这样。第二,MIDIS还与(i)封锁措施的严格程度(政府应对措施)、(ii)死亡累计人数(行为应对措施)以及(iii)自首例确诊病例以来经过的时间(时间应对措施)密切相关。第三,MIDIS在统计上存在显著的区域差异,且更发达的社会实现了更高的社交距离水平。最后,MIDIS被用于解释疫情期间经历的产出损失,结果表明两者之间存在稳健的正相关关系,且具有相当大的经济影响。

相似文献

1
Latent social distancing: Identification, causes and consequences.
Econ Syst. 2022 Mar;46(1):100944. doi: 10.1016/j.ecosys.2022.100944. Epub 2022 Feb 3.
3
Extended Kalman filter based on stochastic epidemiological model for COVID-19 modelling.
Comput Biol Med. 2021 Oct;137:104810. doi: 10.1016/j.compbiomed.2021.104810. Epub 2021 Aug 28.
4
County-Level Social Distancing and Policy Impact in the United States: A Dynamical Systems Model.
JMIR Public Health Surveill. 2020 Dec 23;6(4):e23902. doi: 10.2196/23902.
5
A "Ballpark" Assessment of Social Distancing Efficiency in the Early Stages of the COVID-19 Pandemic.
Int J Environ Res Public Health. 2022 Feb 7;19(3):1852. doi: 10.3390/ijerph19031852.
8
The 2023 Latin America report of the Countdown on health and climate change: the imperative for health-centred climate-resilient development.
Lancet Reg Health Am. 2024 Apr 23;33:100746. doi: 10.1016/j.lana.2024.100746. eCollection 2024 May.
9
Response strategies for COVID-19 epidemics in African settings: a mathematical modelling study.
BMC Med. 2020 Oct 14;18(1):324. doi: 10.1186/s12916-020-01789-2.
10
Communication to promote and support physical distancing for COVID-19 prevention and control.
Cochrane Database Syst Rev. 2023 Oct 9;10(10):CD015144. doi: 10.1002/14651858.CD015144.

本文引用的文献

1
Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities.
J Econ Dyn Control. 2022 Jul;140:104318. doi: 10.1016/j.jedc.2022.104318. Epub 2022 Jan 29.
2
Government responses and COVID-19 deaths: Global evidence across multiple pandemic waves.
PLoS One. 2021 Jul 9;16(7):e0253116. doi: 10.1371/journal.pone.0253116. eCollection 2021.
3
Policy Interventions, Social Distancing, and SARS-CoV-2 Transmission in the United States: A Retrospective State-level Analysis.
Am J Med Sci. 2021 May;361(5):575-584. doi: 10.1016/j.amjms.2021.01.007. Epub 2021 Jan 11.
4
A Machine Learning-Aided Global Diagnostic and Comparative Tool to Assess Effect of Quarantine Control in COVID-19 Spread.
Patterns (N Y). 2020 Dec 11;1(9):100145. doi: 10.1016/j.patter.2020.100145. Epub 2020 Nov 17.
5
A discrete stochastic model of the COVID-19 outbreak: Forecast and control.
Math Biosci Eng. 2020 Mar 16;17(4):2792-2804. doi: 10.3934/mbe.2020153.
6
A discrete epidemic model for SARS transmission and control in China.
Math Comput Model. 2004 Dec;40(13):1491-1506. doi: 10.1016/j.mcm.2005.01.007. Epub 2005 May 3.
9
Final and peak epidemic sizes for SEIR models with quarantine and isolation.
Math Biosci Eng. 2007 Oct;4(4):675-86. doi: 10.3934/mbe.2007.4.675.
10
Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
Biometrics. 2006 Dec;62(4):1170-7. doi: 10.1111/j.1541-0420.2006.00609.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验