Suppr超能文献

从任务诱发的有效连接性预测反应速度和年龄。

Predicting response speed and age from task-evoked effective connectivity.

作者信息

Zhang Shufei, Jung Kyesam, Langner Robert, Florin Esther, Eickhoff Simon B, Popovych Oleksandr V

机构信息

Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.

Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Netw Neurosci. 2025 Apr 30;9(2):591-614. doi: 10.1162/netn_a_00447. eCollection 2025.

Abstract

Recent neuroimaging studies demonstrated that task-evoked functional connectivity (FC) may better predict individual traits than resting-state FC. However, the prediction properties of task-evoked effective connectivity (EC) remain unexplored. We investigated this by predicting individual reaction time (RT) performance in the stimulus-response compatibility task and age, using intrinsic EC (I-EC; calculated at baseline) and task-modulated EC (M-EC; induced by experimental conditions) with dynamic causal modeling (DCM) across various data processing conditions, including different general linear model (GLM) designs, Bayesian model reduction, and different cross-validation schemes and prediction models. We report evident differences in predicting RT and age between I-EC and M-EC, as well as between event-related and block-based GLM and DCM designs. M-EC outperformed both I-EC and task-evoked FC in RT prediction, while all types of connectivity performed similarly for age. Event-related GLM and DCM designs performed better than block-based designs. Our findings suggest that task-evoked I-EC and M-EC may capture different phenotypic attributes, with performance influenced by data processing and modeling choices, particularly the GLM-DCM design. This evaluation of methods for behavior prediction from brain EC may contribute to a meta-scientific understanding of how data processing and modeling frameworks influence neuroimaging-based predictions, offering insights for improving their robustness and efficacy.

摘要

最近的神经影像学研究表明,与静息态功能连接(FC)相比,任务诱发的功能连接可能更能预测个体特征。然而,任务诱发的有效连接(EC)的预测特性仍未得到探索。我们通过在刺激-反应兼容性任务中预测个体反应时间(RT)表现以及年龄来对此进行研究,使用内在有效连接(I-EC;在基线时计算)和任务调制有效连接(M-EC;由实验条件诱发),并采用动态因果模型(DCM),涵盖各种数据处理条件,包括不同的一般线性模型(GLM)设计、贝叶斯模型简化以及不同的交叉验证方案和预测模型。我们报告了I-EC和M-EC之间以及事件相关和基于组块的GLM与DCM设计之间在预测RT和年龄方面存在明显差异。在RT预测方面,M-EC的表现优于I-EC和任务诱发的FC,而对于年龄,所有类型的连接表现相似。事件相关的GLM和DCM设计比基于组块的设计表现更好。我们的研究结果表明,任务诱发的I-EC和M-EC可能捕捉到不同的表型属性,其性能受数据处理和建模选择的影响,特别是GLM-DCM设计。这种对基于脑有效连接进行行为预测方法的评估可能有助于从元科学角度理解数据处理和建模框架如何影响基于神经影像学的预测,为提高其稳健性和有效性提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d983/12140579/782de45fde94/netn-9-2-591-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验