Suppr超能文献

基于深度学习的临床影像组学列线图用于直肠癌患者术前淋巴结转移预测:一项双中心研究

Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study.

作者信息

Ma Shiyu, Lu Haidi, Jing Guodong, Li Zhihui, Zhang Qianwen, Ma Xiaolu, Chen Fangying, Shao Chengwei, Lu Yong, Wang Hao, Shen Fu

机构信息

Department of Radiology, Changhai Hospital, The Navy Medical University, Shanghai, China.

Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

出版信息

Front Med (Lausanne). 2023 Dec 1;10:1276672. doi: 10.3389/fmed.2023.1276672. eCollection 2023.

Abstract

BACKGROUND

Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC.

MATERIALS AND METHODS

Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively.

RESULTS

The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734).

CONCLUSION

The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care.

RESEARCH REGISTRATION UNIQUE IDENTIFYING NUMBER UIN

Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.

摘要

背景

直肠癌(RC)术前对淋巴结转移(LNM)进行精确评估对于确保有效治疗至关重要。本研究旨在基于深度学习技术、术前磁共振成像(MRI)和临床特征开发一种临床-影像组学列线图,以实现对RC中LNM的准确预测。

材料与方法

2017年1月至2023年5月期间,从两家三级医院回顾性招募了519例经病理检查确诊的直肠癌病例。从中心I连续选取253例个体,利用深度学习算法创建一种自动MRI分割技术。使用骰子相似系数(DSC)、第95百分位数豪斯多夫距离(HD95)和平均表面距离(ASD)评估模型的性能。随后,建立了两个外部验证队列:一个由中心I的178例患者组成(EVC1),另一个由中心II的88例患者组成(EVC2)。自动分割提供了影像组学特征,然后用于创建Radscore。使用多变量逻辑回归构建整合Radscore和临床参数的预测列线图。分别采用受试者操作特征(ROC)曲线分析和决策曲线分析(DCA)来评估Radscore、列线图和主观评估模型的鉴别能力。

结果

平均DSC、HD95和ASD分别为0.857±0.041、2.186±0.956和0.562±0.194mm。在训练集中,纳入MR T分期、癌胚抗原(CEA)、糖类抗原19-9(CA19-9)和Radscore的列线图在ROC曲线下面积(AUC)方面高于Radscore和主观评估(0.921对0.903对0.662)。同样,在两个外部验证集中,列线图的AUC均高于Radscore和主观评估(0.908对0.735对0.640,以及0.884对0.802对0.734)。

结论

深度学习方法的应用实现了高效的自动分割。利用术前MRI和自动分割的临床-影像组学列线图被证明是评估RC中LNM的准确方法。这种方法有可能加强临床决策并改善患者护理。

研究注册唯一识别号UIN:研究注册库,标识符9158,https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/180e/10722265/52428c242cf7/fmed-10-1276672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验