Suppr超能文献

一种基于多尺度、多区域和注意力机制的深度学习框架用于预测肝细胞癌分级

A multi-scale, multi-region and attention mechanism-based deep learning framework for prediction of grading in hepatocellular carcinoma.

作者信息

Wei Jingwei, Ji Qian, Gao Yu, Yang Xiaozhen, Guo Donghui, Gu Dongsheng, Yuan Chunwang, Tian Jie, Ding Dawei

机构信息

Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

Beijing Key Laboratory of Molecular Imaging, Beijing, China.

出版信息

Med Phys. 2023 Apr;50(4):2290-2302. doi: 10.1002/mp.16127. Epub 2022 Dec 10.

Abstract

BACKGROUND

Histopathological grading is a significant risk factor for postsurgical recurrence in hepatocellular carcinoma (HCC). Preoperative knowledge of histopathological grading could provide instructive guidance for individualized treatment decision-making in HCC management.

PURPOSE

This study aims to develop and validate a newly proposed deep learning model to predict histopathological grading in HCC with improved accuracy.

METHODS

In this dual-centre study, we retrospectively enrolled 384 HCC patients with complete clinical, pathological and radiological data. Aiming to synthesize radiological information derived from both tumour parenchyma and peritumoral microenvironment regions, a modelling strategy based on a multi-scale and multi-region dense connected convolutional neural network (MSMR-DenseCNNs) was proposed to predict histopathological grading using preoperative contrast enhanced computed tomography (CT) images. Multi-scale inputs were defined as three-scale enlargement of an original minimum bounding box in width and height by given pixels, which correspondingly contained more peritumoral analysis areas with the enlargement. Multi-region inputs were defined as three regions of interest (ROIs) including a squared ROI, a precisely delineated tumour ROI, and a peritumoral tissue ROI. The DenseCNN structure was designed to consist of a shallow feature extraction layer, dense block module, and transition and attention module. The proposed MSMR-DenseCNN was pretrained by the ImageNet dataset to capture basic graphic characteristics from the images and was retrained by the collected retrospective CT images. The predictive ability of the MSMR-DenseCNN models on triphasic images was compared with a conventional radiomics model, radiological model and clinical model.

RESULTS

MSMR-DenseCNN applied to the delayed phase (DP) achieved the highest area under the curve (AUC) of 0.867 in the validation cohort for grading prediction, outperforming those on the arterial phase (AP) and portal venous phase (PVP). Fusion of the results on triphasic images did not increase the predictive ability, which underscored the role of DP for grading prediction. Compared with a single-scale and single-region network, the DP-phase based MSMR-DenseCNN model remarkably raised sensitivity from 67.4% to 75.5% with comparable specificity of 78.6%. MSMR-DenseCNN on DP defeated conventional radiomics, radiological and clinical models, where the AUCs were correspondingly 0.765, 0.695 and 0.612 in the validation cohort.

CONCLUSIONS

The MSMR-DenseCNN modelling strategy increased the accuracy for preoperative prediction of grading in HCC, and enlightens similar radiological analysis pipelines in a variety of clinical scenarios in HCC management.

摘要

背景

组织病理学分级是肝细胞癌(HCC)术后复发的重要危险因素。术前了解组织病理学分级可为HCC治疗中的个体化治疗决策提供指导。

目的

本研究旨在开发并验证一种新提出的深度学习模型,以提高预测HCC组织病理学分级的准确性。

方法

在这项双中心研究中,我们回顾性纳入了384例具有完整临床、病理和放射学数据的HCC患者。为了综合来自肿瘤实质和瘤周微环境区域的放射学信息,提出了一种基于多尺度多区域密集连接卷积神经网络(MSMR-DenseCNNs)的建模策略,使用术前对比增强计算机断层扫描(CT)图像预测组织病理学分级。多尺度输入定义为将原始最小边界框在宽度和高度上按给定像素进行三尺度放大,随着放大相应包含更多瘤周分析区域。多区域输入定义为三个感兴趣区域(ROI),包括一个方形ROI、一个精确勾勒的肿瘤ROI和一个瘤周组织ROI。DenseCNN结构设计为由浅层特征提取层、密集块模块以及过渡和注意力模块组成。所提出的MSMR-DenseCNN通过ImageNet数据集进行预训练,以从图像中捕获基本图形特征,并通过收集的回顾性CT图像进行再训练。将MSMR-DenseCNN模型在三相图像上的预测能力与传统放射组学模型、放射学模型和临床模型进行比较。

结果

在验证队列中,应用于延迟期(DP)的MSMR-DenseCNN在分级预测方面的曲线下面积(AUC)最高,为0.867,优于动脉期(AP)和门静脉期(PVP)。三相图像结果的融合并未提高预测能力,这突出了DP在分级预测中的作用。与单尺度单区域网络相比,基于DP期的MSMR-DenseCNN模型显著提高了敏感性,从67.4%提高到75.5%,特异性相当,为78.6%。DP期的MSMR-DenseCNN优于传统放射组学、放射学和临床模型,在验证队列中其AUC分别为0.765、0.695和0.612。

结论

MSMR-DenseCNN建模策略提高了HCC分级术前预测的准确性,并为HCC管理中各种临床场景下的类似放射学分析流程提供了启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验