Suppr超能文献

由石墨烯赋能的硅基微机电系统/纳机电系统:一种实现大可调性和多功能性的方案。

Silicon-based MEMS/NEMS empowered by graphene: a scheme for large tunability and functionality.

作者信息

Fu Mengqi, Shi Zhan, Bošnjak Bojan, Blick Robert H, Scheer Elke, Yang Fan

机构信息

Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany.

Department of Mechanics, Key Laboratory of Soft Machines and Smart devices of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.

出版信息

Microsyst Nanoeng. 2025 Jun 9;11(1):116. doi: 10.1038/s41378-025-00960-0.

Abstract

Integration of graphene in silicon-based micro-/nanoelectromechanical systems (MEMS/NEMS) marries the robustness of silicon-based materials with the exceptional physical properties of graphene, drastically enhancing the system's regulation performance which now is key for many advanced applications in nanotechnology. Here, we experimentally demonstrate and theoretically analyze a powerful on-chip integration principle consisting of a hybrid graphene/silicon nitride membrane with metallic leads on top that enables an extremely large static and dynamic parameter regulation. When a static voltage is applied to the leads of the integrated structure, a spatially confined localized electrothermomechanical (ETM) effect results in ultra-wide frequency tuning, deformation (buckling transition) and regulation of the mechanical properties. Moreover, by injecting an alternating voltage to the leads, we can excite the resonator vibrating even far beyond its linear regime without a complex and space consuming actuation system. Our results prove that the scheme provides a compact integrated system possessing mechanical robustness, high controllability, and fast response. It not only expands the limit of the application range of MEMS/NEMS devices, but also enables the further miniaturization of the device. The graphene integrated MEMS/NEMS empowered by graphene: a scheme for strong enhancements of tunability and functionality of silicon based device device consists of a hybrid graphene/silicon-nitride membrane with metallic leads that enables ultra-wide frequency tuning, spatial deflection, mechanical properties tuning and on-surface actuation.

摘要

将石墨烯集成到硅基微纳机电系统(MEMS/NEMS)中,将硅基材料的坚固性与石墨烯卓越的物理特性相结合,极大地提高了系统的调节性能,而这种性能如今是纳米技术中许多先进应用的关键。在此,我们通过实验证明并从理论上分析了一种强大的片上集成原理,该原理由顶部带有金属引线的石墨烯/氮化硅混合膜组成,可实现极大的静态和动态参数调节。当向集成结构的引线施加静态电压时,空间受限的局部电热机械(ETM)效应会导致超宽频率调谐、变形(屈曲转变)以及机械性能的调节。此外,通过向引线注入交流电压,我们能够激发谐振器振动,甚至使其振动远超其线性范围,而无需复杂且占空间的驱动系统。我们的结果证明,该方案提供了一个具有机械坚固性、高可控性和快速响应的紧凑集成系统。它不仅扩展了MEMS/NEMS器件应用范围的极限,还能实现器件的进一步小型化。由石墨烯赋能的集成了石墨烯的MEMS/NEMS:一种用于大幅增强硅基器件可调性和功能性的方案,该器件由带有金属引线的石墨烯/氮化硅混合膜组成,可实现超宽频率调谐、空间偏转、机械性能调谐以及表面驱动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8367/12149320/aae3d9a3782c/41378_2025_960_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验