Suppr超能文献

用于肝脏表面关键解剖结构分割的双流MeshCNN

Two-stream MeshCNN for key anatomical segmentation on the liver surface.

作者信息

Zhang Xukun, Ali Sharib, Han Minghao, Kang Yanlan, Wang Xiaoying, Zhang Lihua

机构信息

Academy for Engineering and Technology, Fudan University, Shanghai, 200082, China.

School of Computer Science, University of Leeds, Leeds, LS2 9JT, United Kingdom.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jul;20(7):1531-1540. doi: 10.1007/s11548-025-03358-5. Epub 2025 Jun 10.

Abstract

PURPOSE

Accurate preoperative segmentation of key anatomical regions on the liver surface is essential for enabling intraoperative navigation and position monitoring. However, current automatic segmentation methods face challenges due to the liver's drastic shape variations and limited data availability. This study aims to develop a two-stream mesh convolutional network (TSMCN) that integrates both global geometric and local topological information to achieve accurate, automatic segmentation of key anatomical regions.

METHODS

We propose TSMCN, which consists of two parallel streams: the E-stream focuses on extracting topological information from liver mesh edges, while the P-stream captures spatial relationships from coordinate points. These single-perspective features are adaptively fused through a fine-grained aggregation (FGA)-based attention mechanism, generating a robust pooled mesh that preserves task-relevant edges and topological structures. This fusion enhances the model's understanding of the liver mesh and facilitates discriminative feature extraction on the newly pooled mesh.

RESULTS

TSMCN was evaluated on 200 manually annotated 3D liver mesh datasets. It outperformed point-based (PointNet++) and edge feature-based (MeshCNN) methods, achieving superior segmentation results on the liver ridge and falciform ligament. The model significantly reduced the 3D Chamfer distance compared to other methods, with particularly strong performance in falciform ligament segmentation.

CONCLUSION

TSMCN provides an effective approach to liver surface segmentation by integrating complementary geometric features. Its superior performance highlights the potential to enhance AR-guided liver surgery through automatic and precise preoperative segmentation of critical anatomical regions.

摘要

目的

准确术前分割肝表面的关键解剖区域对于实现术中导航和位置监测至关重要。然而,由于肝脏形状变化剧烈且数据可用性有限,当前的自动分割方法面临挑战。本研究旨在开发一种双流网格卷积网络(TSMCN),该网络整合全局几何信息和局部拓扑信息,以实现关键解剖区域的准确自动分割。

方法

我们提出了TSMCN,它由两个并行流组成:E流专注于从肝脏网格边缘提取拓扑信息,而P流从坐标点捕获空间关系。这些单视角特征通过基于细粒度聚合(FGA)的注意力机制进行自适应融合,生成一个强大的合并网格,该网格保留与任务相关的边缘和拓扑结构。这种融合增强了模型对肝脏网格的理解,并有助于在新合并的网格上进行判别性特征提取。

结果

TSMCN在200个手动标注的3D肝脏网格数据集上进行了评估。它优于基于点的(PointNet++)和基于边缘特征的(MeshCNN)方法,在肝嵴和镰状韧带的分割上取得了优异的结果。与其他方法相比,该模型显著降低了3D Chamfer距离,在镰状韧带分割方面表现尤为出色。

结论

TSMCN通过整合互补的几何特征为肝表面分割提供了一种有效方法。其卓越的性能凸显了通过对关键解剖区域进行自动精确的术前分割来增强AR引导肝脏手术的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验