Yin Lijun, Zhao Yating, Zhang Peiwen, Qi Tongyun, Han Peilin, Cai Luya, Pan Jun, Yang Yongyi, Shi Jie, Feng Shi, Zou Yinying, He Kangxin, Xie Guoliang, He Weihua, Zhou Xinhui, Qian Jianhua
Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Zhe Jiang, Wenzhou, 325035, China.
J Ovarian Res. 2025 Jun 10;18(1):126. doi: 10.1186/s13048-025-01687-2.
Advances in ovarian tissue cryopreservation offer new hope for young hematologic cancer patients. However, the risk of cancer cell reintroduction during transplantation remains a major concern, necessitating both effective tumor cell removal strategies and biocompatible scaffold development.
We characterized decellularized adipose, peritoneal, and ovarian tissue scaffolds through H&E staining, immunofluorescence, SEM, and proliferation assays. Magnetic-activated cell sorting (MACS) efficiency was evaluated for reducing hematologic malignancy contamination. Follicle function was assessed via immunofluorescence and ELISA, while RNA-seq and qPCR compared gene expression across scaffolds.
Sodium dodecyl sulfate (SDS) decellularization effectively preserved extracellular matrix architecture across all tissues. In lipopolysaccharide (LPS)-induced leukocytosis models, MACS significantly reduced leukocyte contamination (p < 0.0001). Comparable follicle growth and hormone production (estrogen/progesterone/inhibin) were observed across scaffolds. RNA-seq analysis identified subtle differential expression in a small subset of follicle function-related genes, while the majority of genes exhibited conserved expression patterns across scaffolds.
The results demonstrate that MACS effectively prevents tumor cell transmission during follicle transplantation. All decellularized scaffolds exhibited high follicular biocompatibility in this animal model, with non-ovarian scaffolds emerging as promising autologous alternatives for artificial ovary engineering.
卵巢组织冷冻保存技术的进步为年轻血液系统癌症患者带来了新希望。然而,移植过程中癌细胞重新引入的风险仍然是一个主要问题,因此需要有效的肿瘤细胞清除策略和生物相容性支架的开发。
我们通过苏木精-伊红染色、免疫荧光、扫描电子显微镜和增殖试验对脱细胞脂肪、腹膜和卵巢组织支架进行了表征。评估了磁激活细胞分选(MACS)减少血液系统恶性肿瘤污染的效率。通过免疫荧光和酶联免疫吸附测定评估卵泡功能,同时通过RNA测序和定量聚合酶链反应比较不同支架间的基因表达。
十二烷基硫酸钠(SDS)脱细胞处理有效地保留了所有组织的细胞外基质结构。在脂多糖(LPS)诱导的白细胞增多模型中,MACS显著降低了白细胞污染(p < 0.0001)。在不同支架上观察到了相当的卵泡生长和激素产生(雌激素/孕酮/抑制素)。RNA测序分析在一小部分卵泡功能相关基因中发现了细微的差异表达,而大多数基因在不同支架上表现出保守的表达模式。
结果表明,MACS有效地防止了卵泡移植过程中的肿瘤细胞传播。在该动物模型中,所有脱细胞支架均表现出高卵泡生物相容性,非卵巢支架有望成为人工卵巢工程的自体替代物。