Barile Melania, Chabra Shirom, Isobe Tomoya, Gottgens Berthold
Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, United Kingdom.
Centre for Translational Stem Cell Biology, HKSTP, Hong Kong SAR, China.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf316.
A defining characteristic of all metazoan organisms is the existence of different cell states or cell types, driven by changes in gene expression kinetics, principally transcription, splicing and degradation rates. The RNA velocity framework utilizes both spliced and unspliced reads in single cell mRNA preparations to predict future cellular states and estimate transcriptional kinetics. However, current models assume either constant kinetic rates, rates equal for all genes, or rates completely independent of progression through differentiation. Consequently, current models for rate estimation are either underparametrized or overparametrized.
Here, we developed a new method (diffGEK) which overcomes this issue, and allows comparison of transcriptional rates across different biological conditions. diffGEK assumes that rates can vary over a trajectory, but are smooth functions of the differentiation process. Analysing Jak2 V617F mutant versus wild type mice for erythropoiesis, and Ezh2 KO versus wild type mice in myelopoiesis, revealed which genes show altered transcription, splicing or degradation rates between different conditions. Moreover, we observed that, for some genes, compensatory changes between different rates can result in comparable overall mRNA levels, thereby masking highly dynamic changes in gene expression kinetics in conventional expression analysis. Collectively, we report a robust pipeline for comparative expression analysis based on altered transcriptional kinetics to discover mechanistic differences missed by conventional approaches, with broad applicability across any biomedical research question where single cell expression data are available for both wild type and treatment/mutant conditions.
This study does not include new data. All the codes are available on github: https://github.com/mebarile/transcriptional_kinetics.
所有后生动物的一个决定性特征是存在不同的细胞状态或细胞类型,这是由基因表达动力学的变化驱动的,主要是转录、剪接和降解速率。RNA速度框架利用单细胞mRNA制备中的剪接和未剪接读数来预测未来的细胞状态并估计转录动力学。然而,目前的模型要么假设动力学速率恒定、所有基因的速率相等,要么假设速率完全独立于分化进程。因此,目前用于速率估计的模型要么参数不足,要么参数过多。
在这里,我们开发了一种新方法(diffGEK),该方法克服了这个问题,并允许比较不同生物学条件下的转录速率。diffGEK假设速率可以在一条轨迹上变化,但它们是分化过程的平滑函数。分析Jak2 V617F突变体与野生型小鼠的红细胞生成,以及Ezh2基因敲除小鼠与野生型小鼠的髓细胞生成,揭示了哪些基因在不同条件下显示出转录、剪接或降解速率的改变。此外,我们观察到,对于一些基因,不同速率之间的补偿性变化可能导致总体mRNA水平相当,从而在传统表达分析中掩盖了基因表达动力学的高度动态变化。我们共同报告了一个基于转录动力学改变的稳健的比较表达分析流程,以发现传统方法遗漏的机制差异,该流程在任何可获得野生型和处理/突变条件下单细胞表达数据的生物医学研究问题中都具有广泛的适用性。
本研究不包括新数据。所有代码可在github上获取:https://github.com/mebarile/transcriptional_kinetics 。