Da'as Sahar Isa, Afreen Hajira, Fathima Aseela, Hani Ahmad M, Mohamed Nura A, Rahman Md Mizanur, Burgon Patrick G, Crovella Sergio, Abou-Saleh Haissam
Research Department, Sidra Medicine, Doha, Qatar.
College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
Front Pharmacol. 2025 May 27;16:1593683. doi: 10.3389/fphar.2025.1593683. eCollection 2025.
Antimicrobial peptides (AMPs) are key components of the innate immune system, exhibiting broad-spectrum antibacterial and immunomodulatory activities. Building on these properties, we designed bio-inspired short antimicrobial peptides (BSAMPs) using computational and bioinformatics approaches. Following promising results demonstrating selective anticancer activity against colorectal cancer cells, this study aimed to investigate the organ-specific safety and toxicity profiles of two selected BSAMPs-Peptide C (GVLCCGYRCCSKWGWCGTT) and Peptide E (CWWMTRRAWR)-using the zebrafish model.
Zebrafish embryos were exposed to various concentrations of Peptide C and Peptide E. Phenotypic toxicity endpoints-including Lethal Concentration 50 (LC), cardiotoxicity, neurotoxicity, and hepatotoxicity-were assessed.
The LC values for Peptide C and Peptide E were determined to be 162.2 μg/mL and 131.82 μg/mL, respectively. Peptide C caused minimal cardiovascular effects below 150 μg/mL but induced neurotoxic and hepatotoxic effects at concentrations exceeding 100 μg/mL. Peptide E exhibited developmental toxicity at concentrations above 100 μg/mL, along with cardiotoxic effects such as reduced heart rate, variable locomotion patterns, and clear hepatotoxic responses.
This study highlights distinct organ-specific toxicity profiles for Peptides C and E and underscores the importance of careful preclinical evaluation of BSAMPs. The zebrafish model provided valuable insights into the potential safety concerns of these peptides, supporting their further investigation and refinement for future therapeutic development.
抗菌肽(AMPs)是先天免疫系统的关键组成部分,具有广谱抗菌和免疫调节活性。基于这些特性,我们采用计算和生物信息学方法设计了受生物启发的短抗菌肽(BSAMPs)。在有前景的结果表明对结肠癌细胞具有选择性抗癌活性之后,本研究旨在使用斑马鱼模型研究两种选定的BSAMPs——肽C(GVLCCGYRCCSKWGWCGTT)和肽E(CWWMTRRAWR)的器官特异性安全性和毒性概况。
将斑马鱼胚胎暴露于不同浓度的肽C和肽E。评估包括半数致死浓度(LC)、心脏毒性、神经毒性和肝毒性在内的表型毒性终点。
肽C和肽E的LC值分别确定为162.2μg/mL和131.82μg/mL。肽C在150μg/mL以下引起的心血管影响最小,但在浓度超过100μg/mL时诱导神经毒性和肝毒性作用。肽E在浓度高于100μg/mL时表现出发育毒性,同时伴有心脏毒性作用,如心率降低、运动模式改变和明显的肝毒性反应。
本研究突出了肽C和肽E不同的器官特异性毒性概况,并强调了对BSAMPs进行仔细临床前评估的重要性。斑马鱼模型为这些肽的潜在安全问题提供了有价值的见解,支持对其进行进一步研究和改进以用于未来的治疗开发。