Li Xiaoyan, Xue Hongli, Yang Shuyu, Li Yufei, Dai Chenghan, Mai Jiaqian, Li Jialin, Li Yajun, Bao Hongli
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202510560. doi: 10.1002/anie.202510560. Epub 2025 Jun 23.
Upgrading abundant carbon dioxide (CO) into high-value organic molecules has garnered broad research interest for decades. Within this domain, catalytic asymmetric synthesis employing CO holds great synthetic importance. Although remarkable advances have been made in asymmetric C─C bond formation using CO as a C1 synthon in recent years, the development of incorporation of CO as an oxygen source for asymmetric C─O bond construction remains elusive, presumably due to the formidable challenge of simultaneously addressing enantioselectivity control and reaction efficiency. Here, we demonstrate the first copper-catalyzed asymmetric C─O bond cross-coupling of allylamines and CO in a radical strategy. The key innovation resides in the rational and strategic conversion of C-symmetric oxazoline ligands to their C-symmetric counterparts, which induces additional C─N axial chirality after coordination with copper. The resultant enantioenriched fluoroalkylated 2-oxazolidones can be further transformed into diverse functional compounds, including novel chiral amino alcohols for oxazoline ligand design and a potent bioactive insecticide analogue. Detailed mechanistic investigations elucidate a radical-mediated pathway and establish the critical role of C-symmetric ligands in achieving efficient stereochemical control.
几十年来,将丰富的二氧化碳(CO₂)升级转化为高价值有机分子已引起广泛的研究兴趣。在这一领域,利用CO₂进行催化不对称合成具有重大的合成意义。尽管近年来在使用CO₂作为C1合成子构建不对称C-C键方面取得了显著进展,但将CO₂作为氧源用于不对称C-O键构建的研究仍未见报道,这可能是由于同时解决对映选择性控制和反应效率这一艰巨挑战所致。在此,我们展示了首例通过自由基策略实现的铜催化烯丙胺与CO₂的不对称C-O键交叉偶联反应。关键创新在于将C-对称恶唑啉配体合理且策略性地转化为其C-对称类似物,后者在与铜配位后会诱导额外的C-N轴手性。由此得到的对映体富集的氟烷基化2-恶唑烷酮可进一步转化为多种功能化合物,包括用于恶唑啉配体设计的新型手性氨基醇以及一种有效的生物活性杀虫剂类似物。详细的机理研究阐明了自由基介导的反应途径,并确立了C-对称配体在实现高效立体化学控制中的关键作用。