Liu Lei, Huang Zhao, Wang Shuai, Wang Jun, Liu Baosen
School of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui, China.
Huaibei Key Laboratory of Digital Multimedia Intelligent Information Processing, Huaibei, Anhui, China.
PLoS One. 2025 Jun 12;20(6):e0325899. doi: 10.1371/journal.pone.0325899. eCollection 2025.
Medical image segmentation plays an important role in medical diagnosis and treatment. Most recent medical image segmentation methods are based on a convolutional neural network (CNN) or Transformer model. However, CNN-based methods are limited by locality, whereas Transformer-based methods are constrained by the quadratic complexity of attention computations. Alternatively, the state-space model-based Mamba architecture has garnered widespread attention owing to its linear computational complexity for global modeling. However, Mamba and its variants are still limited in their ability to extract local receptive field features. To address this limitation, we propose a novel residual spatial state-space (RSSS) block that enhances spatial feature extraction by integrating global and local representations. The RSSS block combines the Mamba module for capturing global dependencies with a receptive field attention convolution (RFAC) module to extract location-sensitive local patterns. Furthermore, we introduce a residual adjust strategy to dynamically fuse global and local information, improving spatial expressiveness. Based on the RSSS block, we design a U-shaped SA-UMamba segmentation framework that effectively captures multi-scale spatial context across different stages. Experiments conducted on the Synapse, ISIC17, ISIC18 and CVC-ClinicDB datasets validate the segmentation performance of our proposed SA-UMamba framework.
医学图像分割在医学诊断和治疗中起着重要作用。最近的大多数医学图像分割方法都是基于卷积神经网络(CNN)或Transformer模型。然而,基于CNN的方法受局部性限制,而基于Transformer的方法则受注意力计算的二次复杂性约束。另外,基于状态空间模型的曼巴(Mamba)架构因其用于全局建模的线性计算复杂性而受到广泛关注。然而,曼巴及其变体在提取局部感受野特征的能力方面仍然有限。为了解决这一限制,我们提出了一种新颖的残差空间状态空间(RSSS)模块,该模块通过整合全局和局部表示来增强空间特征提取。RSSS模块将用于捕获全局依赖性的曼巴模块与感受野注意力卷积(RFAC)模块相结合,以提取位置敏感的局部模式。此外,我们引入了一种残差调整策略来动态融合全局和局部信息,提高空间表现力。基于RSSS模块,我们设计了一个U形SA-UMamba分割框架,该框架有效地捕获了不同阶段的多尺度空间上下文。在Synapse、ISIC17、ISIC18和CVC-ClinicDB数据集上进行的实验验证了我们提出的SA-UMamba框架的分割性能。