Suppr超能文献

优化基于卷积神经网络的膝关节骨关节炎诊断:使用CleanLab重新标记提高模型准确性。

Optimizing CNN-Based Diagnosis of Knee Osteoarthritis: Enhancing Model Accuracy with CleanLab Relabeling.

作者信息

Momenpour Thomures, Abu Mallouh Arafat

机构信息

Department of Computer Science, Manhattan University, Riverdale, NY 10471, USA.

出版信息

Diagnostics (Basel). 2025 May 26;15(11):1332. doi: 10.3390/diagnostics15111332.

Abstract

Knee Osteoarthritis (KOA) is a prevalent and debilitating joint disorder that significantly impacts quality of life, particularly in aging populations. Accurate and consistent classification of KOA severity, typically using the Kellgren-Lawrence (KL) grading system, is crucial for effective diagnosis, treatment planning, and monitoring disease progression. However, traditional KL grading is known for its inherent subjectivity and inter-rater variability, which underscores the pressing need for objective, automated, and reliable classification methods. This study investigates the performance of an EfficientNetB5 deep learning model, enhanced with transfer learning from the ImageNet dataset, for the task of classifying KOA severity into five distinct KL grades (0-4). We utilized a publicly available Kaggle dataset comprising 9786 knee X-ray images. A key aspect of our methodology was a comprehensive data-centric preprocessing pipeline, which involved an initial phase of outlier removal to reduce noise, followed by systematic label correction using the Cleanlab framework to identify and rectify potential inconsistencies within the original dataset labels. The final EfficientNetB5 model, trained on the preprocessed and Cleanlab-remediated data, achieved an overall accuracy of 82.07% on the test set. This performance represents a significant improvement over previously reported benchmarks for five-class KOA classification on this dataset, such as ResNet-101 which achieved 69% accuracy. The substantial enhancement in model performance is primarily attributed to Cleanlab's robust ability to detect and correct mislabeled instances, thereby improving the overall quality and reliability of the training data and enabling the model to better learn and capture complex radiographic patterns associated with KOA. Class-wise performance analysis indicated strong differentiation between healthy (KL Grade 0) and severe (KL Grade 4) cases. However, the "Doubtful" (KL Grade 1) class presented ongoing challenges, exhibiting lower recall and precision compared to other grades. When evaluated against other architectures like MobileNetV3 and Xception for multi-class tasks, our EfficientNetB5 demonstrated highly competitive results. The integration of an EfficientNetB5 model with a rigorous data-centric preprocessing approach, particularly Cleanlab-based label correction and outlier removal, provides a robust and significantly more accurate method for five-class KOA severity classification. While limitations in handling inherently ambiguous cases (such as KL Grade 1) and the small sample size for severe KOA warrant further investigation, this study demonstrates a promising pathway to enhance diagnostic precision. The developed pipeline shows considerable potential for future clinical applications, aiding in more objective and reliable KOA assessment.

摘要

膝骨关节炎(KOA)是一种常见且使人衰弱的关节疾病,严重影响生活质量,在老年人群中尤为如此。准确且一致地对KOA严重程度进行分类,通常使用凯尔格伦 - 劳伦斯(KL)分级系统,对于有效诊断、治疗规划以及监测疾病进展至关重要。然而,传统的KL分级以其固有的主观性和评分者间的变异性而闻名,这凸显了对客观、自动化且可靠的分类方法的迫切需求。本研究调查了一种EfficientNetB5深度学习模型的性能,该模型通过从ImageNet数据集进行迁移学习得到增强,用于将KOA严重程度分类为五个不同的KL等级(0 - 4)。我们使用了一个包含9786张膝盖X光图像的公开可用的Kaggle数据集。我们方法的一个关键方面是一个全面的以数据为中心的预处理管道,其中包括初始的异常值去除阶段以减少噪声,随后使用Cleanlab框架进行系统的标签校正,以识别和纠正原始数据集标签内潜在的不一致性。在经过预处理和Cleanlab修复的数据上训练的最终EfficientNetB5模型在测试集上的总体准确率达到了82.07%。这一性能相较于此前在该数据集上针对五类KOA分类所报告的基准有显著提升,例如ResNet - 101达到了69%的准确率。模型性能的大幅提升主要归因于Cleanlab强大的检测和纠正错误标记实例的能力,从而提高了训练数据的整体质量和可靠性,并使模型能够更好地学习和捕捉与KOA相关的复杂放射学模式。类别性能分析表明健康(KL等级0)和严重(KL等级4)病例之间有明显差异。然而,“可疑”(KL等级1)类别仍存在挑战,与其他等级相比,召回率和精确率较低。当与用于多类任务的其他架构(如MobileNetV3和Xception)进行评估时,我们的EfficientNetB5展示了极具竞争力的结果。将EfficientNetB5模型与严格的以数据为中心的预处理方法(特别是基于Cleanlab的标签校正和异常值去除)相结合,为五类KOA严重程度分类提供了一种强大且显著更准确的方法。虽然在处理本质上模糊的情况(如KL等级1)以及严重KOA的小样本量方面存在局限性,需要进一步研究,但本研究展示了一条提高诊断精度的有前景的途径。所开发的管道在未来临床应用中显示出相当大的潜力,有助于更客观、可靠地评估KOA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验