Suppr超能文献

用于预测胰十二指肠切除术后胰瘘低风险的机器学习:迈向动态和个性化的术后管理策略。

Machine Learning for Predicting the Low Risk of Postoperative Pancreatic Fistula After Pancreaticoduodenectomy: Toward a Dynamic and Personalized Postoperative Management Strategy.

作者信息

Cammarata Roberto, Ruffini Filippo, Catamerò Alberto, Melone Gennaro, Costa Gianluca, Angeletti Silvia, Seghetti Federico, La Vaccara Vincenzo, Coppola Roberto, Soda Paolo, Guarrasi Valerio, Caputo Damiano

机构信息

Operative Research Unit of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.

Unit of Computer Systems & Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

出版信息

Cancers (Basel). 2025 May 31;17(11):1846. doi: 10.3390/cancers17111846.

Abstract

BACKGROUND

Postoperative pancreatic fistula (POPF) remains one of the most relevant complications following pancreaticoduodenectomy (PD), significantly impacting short-term outcomes and delaying adjuvant therapies. Current predictive models offer limited accuracy, often failing to incorporate early postoperative data. This retrospective study aimed to develop and validate machine learning (ML) models to predict the absence and severity of POPF using clinical, surgical, and early postoperative variables.

METHODS

Data from 216 patients undergoing PD were analyzed. A total of twenty-four machine learning (ML) algorithms were systematically evaluated using the Matthews Correlation Coefficient (MCC) and AUC-ROC metrics. Among these, the GradientBoostingClassifier consistently outperformed all other models, demonstrating the best predictive performance, particularly in identifying patients at low risk of postoperative pancreatic fistula (POPF) during the early postoperative period. To enhance transparency and interpretability, a SHAP (SHapley Additive exPlanations) analysis was applied, highlighting the key role of early postoperative biomarkers in the model predictions.

RESULTS

The performance of the GradientBoostingClassifier was also directly compared to that of a traditional logistic regression model, confirming the superior predictive performance over conventional approaches. This study demonstrates that ML can effectively stratify POPF risk, potentially supporting early drain removal and optimizing postoperative management.

CONCLUSIONS

While the model showed promising performance in a single-center cohort, external validation across different surgical settings will be essential to confirm its generalizability and clinical utility. The integration of ML into clinical workflows may represent a step forward in delivering personalized and dynamic care after pancreatic surgery.

摘要

背景

术后胰瘘(POPF)仍然是胰十二指肠切除术(PD)后最相关的并发症之一,对短期预后有重大影响并延迟辅助治疗。当前的预测模型准确性有限,常常无法纳入术后早期数据。这项回顾性研究旨在开发并验证机器学习(ML)模型,以使用临床、手术和术后早期变量预测POPF的有无及严重程度。

方法

分析了216例行PD患者的数据。使用马修斯相关系数(MCC)和AUC-ROC指标对总共24种机器学习(ML)算法进行了系统评估。其中,梯度提升分类器始终优于所有其他模型,展现出最佳预测性能,尤其是在术后早期识别术后胰瘘(POPF)低风险患者方面。为提高透明度和可解释性,应用了SHAP(SHapley加性解释)分析,突出了术后早期生物标志物在模型预测中的关键作用。

结果

还将梯度提升分类器的性能与传统逻辑回归模型的性能直接进行了比较,证实了其相对于传统方法的优越预测性能。本研究表明,ML可以有效地对POPF风险进行分层,可能有助于早期拔除引流管并优化术后管理。

结论

虽然该模型在单中心队列中表现出良好前景,但在不同手术环境中进行外部验证对于确认其通用性和临床实用性至关重要。将ML整合到临床工作流程中可能代表着胰腺手术后提供个性化和动态护理方面向前迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ea/12153646/0002e99356d1/cancers-17-01846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验