Monchot Paul, Coquelin Loïc, Guerroudj Khaled, Feltin Nicolas, Delvallée Alexandra, Crouzier Loïc, Fischer Nicolas
Data Science and Uncertainty Department, National Laboratory of Metrology and Testing, 29 Avenue Roger Hennequin, 78197 Trappes, France.
Department of Materials Science, National Laboratory of Metrology and Testing, 29 Avenue Roger Hennequin, 78197 Trappes, France.
Nanomaterials (Basel). 2021 Apr 9;11(4):968. doi: 10.3390/nano11040968.
The size characterization of particles present in the form of agglomerates in images measured by scanning electron microscopy (SEM) requires a powerful image segmentation tool in order to properly define the boundaries of each particle. In this work, we propose to use an algorithm from the deep statistical learning community, the Mask-RCNN, coupled with transfer learning to overcome the problem of generalization of the commonly used image processing methods such as watershed or active contour. Indeed, the adjustment of the parameters of these algorithms is almost systematically necessary and slows down the automation of the processing chain. The Mask-RCNN is adapted here to the case study and we present results obtained on titanium dioxide samples (non-spherical particles) with a level of performance evaluated by different metrics such as the DICE coefficient, which reaches an average value of 0.95 on the test images.
通过扫描电子显微镜(SEM)测量的图像中以团聚体形式存在的颗粒的尺寸表征需要强大的图像分割工具,以便正确定义每个颗粒的边界。在这项工作中,我们建议使用深度统计学习社区的一种算法——Mask-RCNN,并结合迁移学习来克服分水岭法或主动轮廓法等常用图像处理方法的泛化问题。事实上,几乎有必要系统地调整这些算法的参数,这会减慢处理链的自动化速度。在这里,Mask-RCNN适用于该案例研究,我们展示了在二氧化钛样品(非球形颗粒)上获得的结果,其性能水平通过不同指标进行评估,如DICE系数,在测试图像上该系数的平均值达到0.95。