Zhang Nan, Zhao Shishun, Wu Runze, Luo Xizi, Yang Ming, Chang Zecheng, Xu Jianting
Cancer Center, First Hospital of Jilin University, Changchun, China.
College of Mathematics, Jilin University, Changchun, China.
Front Immunol. 2025 May 30;16:1602907. doi: 10.3389/fimmu.2025.1602907. eCollection 2025.
Integrating immune repertoire sequencing data with single cell sequencing data offers profound insights into the diversity of immune cells and their dynamic changes across various disease states.
Here, we propose a novel KDDC framework that integrates kmers, dataset selection, dimensionality reduction and classification algorithms to facilitate the heterogeneous classification of immune cells.
By comparing various kmer length combinations across seven different classification algorithms, we found that B cell receptor-based cellsubset classification outperforms T cell receptor-based classification, achievingan average AUC of over 96%. This finding offers a new perspective on the classification of immune cells. We also observed that 11 distinct cell subpopulations exhibited differences in cell proportions, inflammatory factorexpression, cell communication, and metabolic pathways, with notable activity in metabolic pathways. These variations may reflect the adaptive changes of cellsubpopulations in response to different disease states. This study aims to uncoverthe potential biological significance of immune prediction, target antigens, andeffective evaluation by analyzing the immune characteristics of specific cellsubsets at the cellular level. These findings will not only enhance ourunderstanding of immune system functions but also offer new directions for the development and optimization of immunotherapy.
将免疫组库测序数据与单细胞测序数据相结合,能够深入洞察免疫细胞的多样性及其在各种疾病状态下的动态变化。
在此,我们提出了一种新颖的KDDC框架,该框架整合了k-mers、数据集选择、降维和分类算法,以促进免疫细胞的异质性分类。
通过比较七种不同分类算法的各种k-mer长度组合,我们发现基于B细胞受体的细胞亚群分类优于基于T细胞受体的分类,平均AUC超过96%。这一发现为免疫细胞分类提供了新的视角。我们还观察到11个不同的细胞亚群在细胞比例、炎症因子表达、细胞通讯和代谢途径方面存在差异,其中代谢途径有显著活性。这些变化可能反映了细胞亚群对不同疾病状态的适应性改变。本研究旨在通过在细胞水平分析特定细胞亚群的免疫特征,揭示免疫预测、靶抗原和有效评估的潜在生物学意义。这些发现不仅将增进我们对免疫系统功能的理解,还将为免疫疗法的开发和优化提供新的方向。