Suppr超能文献

利用人工智能进行肿瘤学数字症状管理:CRCWeb的开发。

Leveraging Artificial Intelligence for Digital Symptom Management in Oncology: The Development of CRCWeb.

作者信息

Liu Darren, Lin Yufen, Yan Runze, Wang Zhiyuan, Bold Delgersuren, Hu Xiao

机构信息

Department of Computer Science, Laney Graduate School, Emory University, Atlanta, GA, United States.

Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Rd NE, Atlanta, GA, 30322, United States, 1 3104986136.

出版信息

JMIR Cancer. 2025 Jun 16;11:e68516. doi: 10.2196/68516.

Abstract

Digital health interventions offer promise for scalable and accessible health care, but access is still limited by some participatory challenges, especially for disadvantaged families facing limited health literacy, language barriers, low income, or living in marginalized areas. These issues are particularly pronounced for patients with colorectal cancer (CRC), who often experience distressing symptoms and struggle with educational materials due to complex jargon, fatigue, or reading level mismatches. To address these issues, we developed and assessed the feasibility of a digital health platform, CRCWeb, to improve the accessibility of educational resources on symptom management for disadvantaged patients with CRC and their caregivers facing limited health literacy or low income. CRCWeb was developed through a stakeholder-centered participatory design approach. Two-phase semistructured interviews with patients, caregivers, and oncology experts informed the iterative design process. From the interviews, we developed the following 5 key design principles: user-friendly navigation, multimedia integration, concise and clear content, enhanced accessibility for individuals with vision and reading disabilities, and scalability for future content expansion. Initial feedback from iterative stakeholder engagements confirmed high user satisfaction, with participants rating CRCWeb an average of 3.98 out of 5 on the postintervention survey. Additionally, using generative artificial intelligence tools, including large language models like ChatGPT and multimedia generation tools such as Pictory, complex health care guidelines were transformed into concise, easily comprehensible multimedia content, and made accessible through CRCWeb. User engagement was notably higher among disadvantaged participants with limited health literacy or low income, who logged into the platform 2.52 times more frequently than nondisadvantaged participants. The structured development approach of CRCWeb demonstrates that generative artificial intelligence-powered multimedia interventions can effectively address health care accessibility barriers faced by disadvantaged patients with CRC and caregivers with limited health literacy or low income. This structured approach highlights how digital innovations can enhance health care.

摘要

数字健康干预为可扩展且可及的医疗保健带来了希望,但获取仍受到一些参与性挑战的限制,尤其是对于面临健康素养有限、语言障碍、低收入或生活在边缘化地区的弱势家庭而言。这些问题在结直肠癌(CRC)患者中尤为突出,他们经常经历令人痛苦的症状,并且由于复杂的术语、疲劳或阅读水平不匹配而难以理解教育材料。为了解决这些问题,我们开发并评估了一个数字健康平台CRCWeb的可行性,以提高面向健康素养有限或低收入的弱势CRC患者及其护理人员的症状管理教育资源的可及性。CRCWeb是通过以利益相关者为中心的参与式设计方法开发的。对患者、护理人员和肿瘤学专家进行的两阶段半结构化访谈为迭代设计过程提供了信息。通过访谈,我们制定了以下5条关键设计原则:用户友好的导航、多媒体整合、简洁明了的内容、增强视力和阅读障碍者的可及性以及未来内容扩展的可扩展性。利益相关者迭代参与的初步反馈证实了用户的高度满意度,参与者在干预后调查中对CRCWeb的平均评分为3.98(满分5分)。此外,使用生成式人工智能工具,包括ChatGPT等大型语言模型和Pictory等多媒体生成工具,复杂的医疗保健指南被转化为简洁、易于理解的多媒体内容,并通过CRCWeb提供。健康素养有限或低收入的弱势参与者的用户参与度明显更高,他们登录平台的频率比非弱势参与者高2.52倍。CRCWeb的结构化开发方法表明,生成式人工智能驱动的多媒体干预可以有效解决弱势CRC患者和健康素养有限或低收入的护理人员面临的医疗保健可及性障碍。这种结构化方法突出了数字创新如何能够改善医疗保健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验