Suppr超能文献

基于人工智能的心电图用于检测先天性矫正型大动脉转位

Artificial Intelligence-Enabled ECG to Detect Congenitally Corrected Transposition of the Great Arteries.

作者信息

Ghelani Sunil J, Thatte Nikhil, La Cava William, Triedman John K, Mayourian Joshua

机构信息

Department of Cardiology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.

Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

出版信息

Pediatr Cardiol. 2025 Jun 16. doi: 10.1007/s00246-025-03916-3.

Abstract

L-loop congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital heart defect that may remain undiagnosed for decades and lead to significant morbidities, making it of interest for early detection. In this study, we address this gap by developing and internally testing an artificial intelligence-enabled electrocardiogram (AI-ECG) model to diagnose ccTGA from standard 12-lead ECGs. The dataset included the first ECG from 61,482 patients (0.7% with ccTGA), which was partitioned into training (70%) and testing (30%) cohorts. The convolutional neural network model achieved an area under the receiver-operating characteristic curve of 0.95 [95% CI 0.94-0.96] and an area under the precision-recall curve of 0.16 [95% CI 0.12-0.21]. The model performed well across different age groups, with slightly lower performance in patients < 1 month old. Key features identified by the model included widened QRS complexes, negative QRS complexes in leads V1-V2, and the lack of Q waves in lateral precordial leads. This study highlights the potential of AI-ECG to detect subtle patterns in rare congenital heart defects, providing a scalable method for early diagnosis and improving access to care. Future studies may include external validation in diverse clinical settings and multi-modal models to enhance performance and clinical utility.

摘要

L环先天性矫正型大动脉转位(ccTGA)是一种罕见的先天性心脏缺陷,可能数十年未被诊断出来,并导致严重的发病情况,因此早期检测备受关注。在本研究中,我们通过开发并在内部测试一种基于人工智能的心电图(AI-ECG)模型来从标准12导联心电图诊断ccTGA,以填补这一空白。数据集包括61482名患者的首次心电图(其中0.7%患有ccTGA),这些数据被分为训练组(70%)和测试组(30%)。卷积神经网络模型的受试者工作特征曲线下面积为0.95 [95%置信区间0.94 - 0.96],精确召回率曲线下面积为0.16 [95%置信区间0.12 - 0.21]。该模型在不同年龄组中表现良好,在年龄小于1个月的患者中性能略低。该模型识别出的关键特征包括QRS波群增宽、V1 - V2导联QRS波群呈负向以及胸前外侧导联缺乏Q波。本研究强调了AI-ECG在检测罕见先天性心脏缺陷细微模式方面的潜力,为早期诊断提供了一种可扩展的方法,并改善了医疗服务的可及性。未来的研究可能包括在不同临床环境中的外部验证以及多模态模型,以提高性能和临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验